System Macromodel of Agricultural Building with Aim to Energy Consumption Minimization

DOI 10.7160/aol.2018.100103
No 1/2018, March
pp. 25-35

Malinovský, V. (2018) “System Macromodel of Agricultural Building with Aim to Energy Consumption Minimization", AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 1, pp. 25-35. ISSN 1804-1930. DOI 10.7160/aol.2018.100103.


Economizing on energy intended for heating of agricultural buildings is correlative with their convenient construction from the viewpoint of both thermal and mechanical properties. Therefore, knowledge of temperature time characteristics enables building construction optimizing. This paper deals with process of recognizing elements and parameters of some particular building object, assembling its system macromodel, and analysing temperature time characteristics on its base using appropriate mathematic tools (Laplace and Fourier transformation, matrix characterizing of model parameters) and special software (ANATH). Finally, the resulting temperature time characteristics can be used for an optimal design of some planned agricultural object or for reconstruction of some existing one.


Economy of agricultural engineering, heating energy economy, system analysis, temperature time characteristics, expenses optimizing, ambient temperature well-being.


  1. Bracewell, R. (1999) “The Fourier Transform and Its Applications”, McGraw-Hill, New York, USA. ISBN 978-00-730-3938-1.
  2. Chloupek, J. (2012) “Posuzování tepelné bilance a větrání stájových objektů pro hospodářská zvířata,multimediální učební text” (in Czech), University of Veterinary and Pharmaceutical Sciences Brno,Brno.
  3. Cooke, J., Robert, J. and DeBaerdemaeker, J. G. (1975) “Transient Thermal Behavior of AgriculturalBuildings, Including Subsurface Heating”, Paper – American Society of Agricultural Engineers.
  4. Dong, Z., Zhu, P., Bobker, M. and Ascazubi, M. (2015) “Simplified characterization of buildingthermal response rates”, Energy Procedia, Vol. 78, pp. 788-793. ISSN 1876-6102. DOI 10.1016/j.egypro.2015.11.098.
  5. Draghici, F., Mitu, F., Dilimot, G. and Enache, I. (1998) “Method to increase the thermal stabilityof the heating circuits“, Proceedings of the International Semiconductor Conference, CAS 2,pp. 501-504.
  6. Evola, G. and Marletta, L. (2013) “A dynamic parameter to describe the thermal responseof buildings to radiant heat gains”, Energy and Buildings, Vol. 65, pp. 448-457. ISSN 0378-7788. DOI 10.1016/j.enbuild.2013.06.026.
  7. Hoffman, M. E. and Feldman, M. (1981) “Calculation of the thermal response of buildingsby the total thermal time constant method”, Building and Environment, Vol. 16, No. 2, pp. 71-85.ISSN 0360-1323. DOI 10.1016/0360-1323(81)90023-8.
  8. Jokl, M. (1989) “TZB – technická zařízení budov II: Interní mikroklima, ventilační a klimatizačnítechnika pro stavební inženýry” (in Czech), Czech Technical University in Prague.
  9. Lloyd, J. R. and Davisson, M. C. (1978) “Simulation of the Thermal Response of Buildingsto Changes in the Environment”, Modeling and Simulation, Proceedings of the Annual PittsburghConference, 9 (pts 1-4), pp. 295-300.
  10. Malinovský, V. (1989) “Systémový makromodel pro analýzu spotřeby energie s ohledemna její minimalizaci” (in Czech), diploma thesis, Czech Technical University in Prague.ISBN 978-80-010-0081-6.
  11. Mehta, D. P. and Woods, J. E. (1981) “Accuracy of an Analytical Model to Predict Dynamic ThermalResponses of Building Systems”, Proceedings of the National Conference on Power Transmission,pp. 457-469.
  12. Moos, P. (1989) “Počítačový makromodel tepelného mikroklimatu budov” (in Czech), Pozemnístavby, Vol. 2, pp. 92-96.
  13. Moos, P. and Vytlačil, D. (1991) “Citlivosti přenosu tepla na parametry stavebních konstrukcí”(in Czech), Energetika, Vol. 2, pp.45-49.ISSN 0375-8842.
  14. Moziraji, Z. P., Azimi, A. and Hannani, S. K. (2014) “Analysis and modeling of building thermalresponse to investigate the effect of boundary conditions”, Scientia Iranica, Vol. 20, No. 4,pp. 1269-1277. E-ISSN 2345-3605, ISSN 1026-3098.
  15. Pöttgen, P., Ederer, T., Altherr, L., Lorenz, U. and Pelz, P. F. (2016) “Examination and Optimizationof a Heating Circuit for Energy-Efficient Buildings”, Energy Technology, Vol. 4, No. 1, pp. 136-144.E-ISSN 2194-4296. DOI 10.1002/ente.201500252.
  16. Price, B. A. and Smith, T. F. (1995) “Thermal response of composite building envelopesaccounting for thermal radiation”, Energy Conversion and Management, Vol. 36, No. 1, pp. 23-33.ISSN 0196-8904. DOI 10.1016/0196-8904(94)00037-Z.
  17. Rochla. M. (1983) “Stavební tabulky” (in Czech), SNTL-Alfa, Prague.
  18. Sangi, R., Baranski, M., Oltmanns, J., Streblow, R. and Müller, D. (2016) “Modeling and simulationof the heating circuit of a multi-functional building”, Energy and Buildings, Vol. 110, pp. 13-22.ISSN 0378-7788. DOI 10.1016/j.enbuild.2015.10.027.
  19. Sonderegger, R. C. (1977) “Harmonic analysis of building thermal response appliedto the optimal location of insulation within the walls”, Energy and Buildings, Vol. 1, No. 2, pp. 131-140.ISSN 0378-7788. DOI 10.1016/0378-7788(77)90025-1.
  20. Stupka, R., Líkař, K., Šprysl, M. and Čítek, J. (2014) “Řízení mikroklima v chovu prasat” (in Czech),FAFNR, Czech Universioty of Life Sciences Prague, Prague. ISBN 978-80-213-2401-5.
  21. Svoboda, J. (2012) “Mikroklima budov ve vztahu k energetické náročnosti” in Czech), FA, CzechTUniversity of Technology Brno, Brno. ISBN 978-80-214-4463-8.
  22. Veverka, J., Chybík, J. and Sedlák R. (1992) “Energetické hodnocení budov a tepelná pohodavnitřního prostředí” (in Czech), University of Technology Brno, Brno.
  23. Wachowicz, E., Raczek, A. and Woroncow, L. (2016) “The use of optimization of energy-savingmicroclimate control in selected agricultural objects”, Journal of Research and Applicationsin Agricultural Engineering, Vol. 61, No. 1, pp. 119-123, Industrial Institute of AgriculturalEngineering. ISSN ISSN 1642-686X.
  24. Zajicek, M. and Kic, P. (2014) “Heating of large agricultural and industrial buildings”, AgronomyResearch, Vol. 12, No. 1, pp. 237-244. ISSN 1406-894X.

Full paper

  Full paper (.pdf, 2.13 MB).