Price Volatility Modelling – Wheat: GARCH Model Application
DOI 10.7160/aol.2017.090402
No 4/2017, December
pp. 15-24
Čermák, M., Malec, K. and Maitah, M. (2017) “Price Volatility Modelling – Wheat: GARCH Model Application", AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 4, pp. 15-24. ISSN 1804-1930. DOI 10.7160/aol.2017.090402.
Abstract
This paper is focused on the modelling of volatility in the agricultural commodity market, specifically on wheat. The aim of this study is to develop an applicable and relevant model of conditional heteroscedasticity from the GARCH family for wheat futures prices. The GARCH (1,1) model has the ability to capture the main characteristics of the commodity market, specifically leptokurtic distribution and volatility clustering. The results show that the forecasted volatility of wheat has a tendency towards standard error reversion in the long-run and the position of price distribution is closed to the normal distribution. The wheat production can be hedged against the price variability with long-term contracts. The price of wheat was influenced during the years of 2005 to 2015 by different events, in particular; financial crisis, increasing grain demand and cross-sectional price variability. The results suggest that agricultural producers should focus on short-term structural events the wheat market, rather than long-term variability.
Keywords
Price volatility, forecasting, GARCH, wheat price, CME, futures contracts.
References
- Alberg, D., Shalit, H., a Yosef, R., (2008) "Estimating stock market volatility using asymmetric GARCH models: A Clarification", Applied Financial Economics, Vol. 18, No. 15, pp. 1201-1208. ISSN 0960-3107. DOI 10.1080/09603100701604225.
- Babcock, B. A. and Fabiosa, J. F. (2011) "The Impact of Ethanol and Ethanol Subsidies on Corn Prices:Revisiting History", CARD Policy Briefs, Center for Agricultural and Rural Development, Vol. 11,No. 5. [Online]. Available: https://www.card.iastate.edu/products/publications/synopsis/?p=1155[Accessed: 25 April 2017].
- Bai, X., Jeffrey, R. R. and Tiao, G. C. (2003) "Kurtosis of GARCH and stochastic volatilitymodels with non-normal innovations: A Clarification", Journal of Econometrics, Vol. 114, No. 2,pp. 349-360. ISSN 03044076. DOI 10.1016/S0304-4076(03)00088-5.
- Baur, D. G. (2011) "Explanatory mining for gold: Contrasting evidence from simple and multipleregressions", Resources Policy, Vol. 36, No. 3, pp. 265-275.
- Benavides, G. (2004) “Price Volatility Forecasts for Agricultural Commodities: An Applicationof Historical Volatility Models, Option Implied and Composite Approaches for Futures Pricesof Corn and Wheat“, SSRN, 38 p. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=611062 [Accessed: 25 April 2017]. DOI 10.2139/ssrn.611062.
- Black, F. and Cox, J. C. (1973) „Valuing Corporate Securities: Some Effects of Bond IndentureProvisions", Journal of Political Economy, Vol. 81, No. 3, pp. 637-654.
- Bliemel, F. (1973) "Theil's Forecast Accuracy Coefficient: A Clarification", Journal of MarketingResearch, Vol. 10, No. 4, pp. 444-446. ISSN 00222437. DOI 10.2307/3149394.
- Bollerslev, T. (1986) “Generalized Autoregressive Conditional Heteroskedasticity”. Journalof Econometrics, Vol. 31, No. 3, pp. 307-327. ISSN 0304-4076. DOI 10.1016/0304-4076(86)90063-1.
- Bouchet-Hourdon (2011) "Agricultural Commodity Price Volatility: An Overwiev", OECD Food,Agriculture and Fisheries Working Papers, OECD Publishing.
- Chkili, W., Hammoudeh, S. and Nguyen, D. K. (2014) "Volatility forecasting and risk managementfor commodity markets in the presence of asymmetry and long memory“, Energy Economics,Vol. 41, pp. 1-18. ISSN 0140-9883. DOI 10.1016/j.eneco.2013.10.011.
- Chong, C. W., Ahmad, M. I. and Abdullah, M. Y. (1999) "Performance of GARCH models inforecasting stock market volatility“. Journal of Forecast, Vol. 18, pp. 333–343.
- CRB Commodity Yearbook (2013) "CRB Commodity Yearbook", 1. Chicago: Commodity ResearchBureau, 384p. ISBN 9780910418928.
- Dickey, D. A., Fuller, W. A. and Huang D. (1979) "Distribution of the Estimators for AutoregressiveTime Series With a Unit Root: Further evidence using GARCH-class models“, Journalof the American Statistical Association, Vol. 74, No. 366, pp. 427-431. ISSN 01621459.
- Douc, R., Moulines, E., and Stoffer, D. S. (2014) "Nonlinear Time Series-Theory, Methodsand Applications with R Examples“, CRC Press, UK, 551 p. ISBN 9781466502253 - CAT# K14426.
- Engle, R. F. and Yoo, B. S. (1987) “Forecasting and Testing in Co-Integrated Systems”, Journalof Econometrics, Vol. 35 (May), pp. 143-159. ISSN 0304-4076.
- Fama, E. F. (1965) “The Behavior of Stock-Market Prices”, The Journal of Business, Vol. 38, No. 1,pp. 34-105. JSTOR, [Online]. Available: https://www.jstor.org/stable/2350752. [Accessed: 5 April2017].
- Fang, W., Miller, S. M. and Lee, Ch. (2008) "Cross-Country Evidence on Output Growth Volatility:Nonstationary Variance and Garch Models“, Scottish Journal of Political Economy, Vol. 55, No. 4,pp. 509-541. ISSN 00369292. DOI 10.1111/j.1467-9485.2008.00464.x.
- FARMDOC (2015) University of Illnois at Utbana, Chamapaign, College of Agricultural, Consumerand Environmental Sciences: Illinois, US, Dec. 2015 [Online]. Available at: http://www.farmdoc.illinois.edu/ [Accessed: 10 May 2017].
- Franses, P. H. and Van Dijk, D. (1996) "Forecasting stock market volatility using (non-linear) Garchmodels", Journal of Forecast, Vol. 15, pp. 229-235.
- FRED (2016) Federal Reserve Bank of St. Louis, St. Louis: Economic Research, Feb. 2016[Online]. Available at: https://research.stlouisfed.org/fred2/ [Accessed: 25 Jun. 2017 ].
- Hansen, P. R. and Lunde, A. (2005) "A forecast comparison of volatility models: does anythingbeat a GARCH(1,1)?“, Journal of Applied Economics, Vol. 20, pp. 873–889. ISSN 1514-0326. DOI 10.1002/jae.800.
- Hull, J. (2003) “Options, futures”, 5th ed. Upper Saddle River: Prentice Hall, c. Prentice Hall financeseries. 822 p. ISBN 01-300-9056-5.
- Iqbal, F., Mukherjee, K., Baah, M., E. and Nortey, N. N. E. (2010). "M-estimators of someGARCH-type models; computation and application: an autoregressive conditional heteroscedastic(ARCH) models", Statistics and Computing, Vol. 20, No. 4, pp. 435-445. E-ISSN 1573-1375,ISSN 0960-3174. DOI 10.1007/s11222-009-9135-x.
- Javed, F. and Mantalos, P. (2013) "GARCH-Type models and the performance of informationcriteria“, Communications in Statistics: Simulation and Computation, Vol. 42, No. 8,pp.1917-1933. ISSN 0361-0918.
- Klotz, P., Lin, T. C., Hsu, S.-H. (2014) "Global commodity prices, economic activity andmonetary policy: The relevance of China", Resources Policy, Vol. 42, pp. 1-9. ISSN 0301-4207. DOI 10.1016/j.resourpol.2014.08.001.
- Knight, J. L. and Satchel, S. (2007) "Forecasting volatility in the financial markets", 3rd ed. Boston:Butterworth-Heinemann. 432 p. ISBN 978-0-7506-6942-9.
- Krane, J. (2015) "A refined approach: Saudi Arabia moves beyond crude", Energy Policy, Vol. 82,No. 1, pp. 99-104. ISSN 0301-4215. DOI 10.1016/j.enpol.2015.03.008.
- Kroner, K. F., Kneafsey, K. P. and Claessens, S. (1995) "Forecasting volatility in commoditymarkets. Journal of Forecasting, Vol. 14, No. 2, pp. 77–95. E-ISSN 1099-131X. DOI 10.1002/for.3980140202.
- Lee, D. D. and Faff, R. W. (2009) "Corporate Sustainability Performance and Idiosyncratic Risk:A Global Perspective“, Financial Review, Vol. 44, No. 2, pp. 213-237. ISSN 07328516. DOI 10.1111/j.1540-6288.2009.00216.x.
- Mandelbrot, B. (1963) "The Variation of Certain Speculative Prices", The Journal of Business,Vol. 36, No. 4, pp. 394-419. ISSN 0021-9398. DOI 10.1086/294632.
- Maneesoonthorn, O. W. (2015) "High-Frequency Financial Econometrics, by Yacine Aït-Sahalia andJean Jacod (Princeton University Press, Princeton, NJ, 2014), pp. xxiv + 659", Economic Record,Vol. 91, pp. 542–544. ISSN 00130249. DOI 10.1111/1475-4932.12228.
- Musunuru, N. S. (2014) “Modeling Price Volatility Linkages between Corn and Wheat: A MultivariateGARCH Estimation”, International Advances in Economic Research, Vol. 20, No. 3, pp. 269-280.ISSN 1083-0898. DOI 10.1007/s11294-014-9477-9.
- Najand, M. (2002) "Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models“,The Financial Review, Vol. 37, No. 1, pp. 93-104. ISSN 0732-8516. DOI 10.1111/1540-6288.00006.
- Olowe, R. A. (2009) “Modelling Naira/Dollar Exchange Rate Volatility: Application of GARCHand Asymmetric Models, International Review of Business Research Paper, Vol. 5, pp. 377 - 398.E-ISSN 1832-9543, ISSN 1837-5685.
- Onour, I. A. and Sergi, B. S. (2012) “Modeling and Forecasting Volatility in the Global FoodCommodity Prices” (Modelování a Prognózování Volatility Globálních cen PotravinářskýchKomodit, In Czech), Agricultural Economics - Czech, Vol. 57, No. 3, pp. 132–139. E-ISSN ISSN1805-9295, ISSN ISSN 0139-570X.
- Quaicoe,T. M., Twenefour, F. B., Baah, E. M. and Nortey, E. N. (2015) "Modeling variationsin the cedi/dollar exchange rate in Ghana: an autoregressive conditional heteroscedastic (ARCH)models", SpringerPlus, Vol. 4, No. 1. ISSN 2193-1801. DOI 10.1186/s40064-015-1118-0.
- Poon, S.-H. (2005) "A practical guide for forecasting financial market volatility", Hoboken, NJ:Wiley. ISBN 978-0-470-85613-0.
- Reider R. (2009) "Volatility forecasting I: GARCH models“, New York: Courant Instituteof Mathematical Sciences, New York University. [Online]. Available at: https://cims.nyu.edu/~almgren/timeseries/Vol_Forecast1.pdf [Accessed: 14 January 2014].
- Tulley, E. and Lucey, B. M. (2007) "A power GARCH examination of the gold market",Research in International Business and Finance, Vol. 21, No. 2., pp. 316-325. ISSN 0275-5319. DOI 10.1016/j.ribaf.2006.07.001.
- Val, F., Pinto, A., C., F. and Klotzle, M., C. (2014) “Volatilidade e Previsão de Retorno com Modelosde Alta Frequência e GARCH: Evidências para o Mercado Brasileiro”, Revista Contabilidade,Vol. 25, No. 65, pp. 189-201. ISSN 1808-057x. DOI 10.1590/S1519-70772014000200008.
- Wang, Y. C., Yoshitani, J. and Fukami, K. (2005) "Stochastic multiobjective optimizationof reservoirs in parallel: A Clarification", Hydrological Processes, Vol. 19, No. 18, pp. 3551-3567.ISSN 0885-6087. DOI 10.1002/hyp.5845.
- Wei, Y, Yudong, W. and Huang, D. (2010) "Forecasting crude oil market volatility: Further evidenceusing GARCH-class models“, Energy Economics, Vol. 32, No. 6, pp. 1477-1484. ISSN 01409883. DOI 10.1016/j.eneco.2010.07.009.
- Yang, J., Haigh, M. S. and Leatham, D. J. (2001) “Agricultural liberalization policy and commodityprice volatility: a GARCH application”, Applied Economics Letters. Vol. 8, No. 9, pp. 593-598.ISSN 1350-4851. DOI 10.1080/13504850010018734.
- Zhang, Y., Yao, T. and He, L. (2015) "Forecasting crude oil market volatility: can the RegimeSwitching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org,[Online]. Available at: http://arxiv.org/pdf/1512.01676. [Accessed: 10 May 2017].
- Zilberman, D., Hochman, G., Rajagopal, D., Sexton, S. and Timilsina, G. (2013) "The impactof biofuels on commodity food prices: Assessment of findings", American Journal of AgriculturalEconomics, Vol. 95, No. 2, pp. 275-281. DOI 10.1093/ajae/aas037.
- Zivot, E. (2009) “Practical Issues in the Analysis of Univariate GARCH models“, In: Andersen, T.G., Davis, R. A., Kreiss, J.-P., Mikosch, Th. V. "Handbook of Financial Time Series", Springer, NewYork, 113 - 155. ISBN 978-3-540-71296-1.
- Zuppiroli, M. and Giha, C. R. (2016) "Hedging effectiveness of European wheat futures markets:an application of multivariate GARCH models", International Journal of Applied ManagementScience, Vol. 8, No. 2, 132-158. E-ISSN 1755-8913,ISSN 1755-8913. DOI 10.1504/IJAMS.2016.077006.