The Influence of Investment Costs on Biogas Station Development and Their Impact on Greenhouse Gas Emissions from Czech Agriculture

DOI 10.7160/aol.2016.080413
No 4/2016, December
pp. 143-151

Slaboch, J. and Hálová, P. (2016) “The Influence of Investment Costs on Biogas Station Development and Their Impact on Greenhouse Gas Emissions from Czech Agriculture", AGRIS on-line Papers in Economics and Informatics, Vol. 8, No. 4, pp. 143 - 151. ISSN 1804-1930. DOI 10.7160/aol.2016.080413.

Abstract

The paper present the results for the influence of investment costs into biogas station on the amount of emissions from the agricultural sector. For the evaluation is applied structural analysis of major factors affecting the level of CO2 emissions from agriculture. Among these factors are: the number of animals (converted to livestock units), cost of investment in biogas plants, the quantity of nitrogen fertilizers and the total amount of CO2 emissions from agriculture. The results show that the investment costs haven't significant influence despite the correct direction of effect. Significant impact on CO2 emissions from agriculture have the numbers of animals (respectively cattle units). In the case of applications reviewed model from the Czech Republic to selected countries of the EU shows that the highest investment costs and also decrease CO2 equivalent emissions from agricultural biogas plants is in Germany. The high number of agricultural biogas plants is also evident in Italy and the United Kingdom. Investment costs are in these two countries in the range of 115 to 144 mld. CZK. Furthermore, it is evident that the significant investment costs are incurred by the smaller countries (Czech Republic, Slovakia, Belgium). Investment costs in this case are in the range 10-33 mld. CZK.

Keywords

Biogas stations, CO2 emissions, animal waste, livestock numbers, linear regression model, investment costs.

References

  1. Adeoti, O., Ayelegun, T. A. and Osho, S. O. (2014) “Nigeria biogas potential from livestock manure and its estimated climate value”, Renewable and sustainable energy reviews, Vol. 37, pp. 243-248. ISSN 1364-0321. DOI 10.1016/j.rser.2014.05.005.
  2. Amiri, S., Henning, D. and Karlsson B. G. (2013) “Simulation and introduction of a CHP plant in a Swedish biogas system”, Renewable energy, Vol. 49, pp. 242-249. ISSN 0960-1481. DOI 10.1016/j.renene.2012.01.022.
  3. Bellarby, J., Foereid, B., Hastings, A. and Smith, P. (2008) „Cool Farming: Climate Impacts of Agriculture and Mitigation Potential“, Greenpeace International, Amsterdam, The Netherlands. [Online]. Available: http://www.greenpeace.org /international/Global/international/planet-2/ report/2008/1/cool-farming-fullreport.pdf [Accessed: 23 Jan. 2015].
  4. Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P. and Smith, P. (2013) „Livestock greenhouse gas emissions and mitigation potential in Europe“, Global Change Biology, Vol. 19, pp. 3–18. ISSN 1365-2486. DOI 10.1111/j.1365-2486.2012.02786.x.
  5. Dace, E. and Blumberga, D. (2016) “How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis”, Ecological Indicators, Vol. 71, pp. 352-358. ISSN 1470-160X. DOI 10.1016/j.ecolind.2016.07.016.
  6. Dalgaard, T., Halberg, N. and Porter, J. R. (2001) “A model for fossil energy use in Danish agriculture used to compare organic and conventional farming”, Agriculture, Ecosystems and Environment, Vol. 87, No. 1, pp. 51–65. ISSN 0167-8809. DOI 10.1016/S0167-8809(00)00297-8.
  7. Dämmgen, U. and Hutchings, N. J. (2008) “Emissions of gaseous nitrogen species from manure management: a new approach”, Environmental Pollution, Vol. 154, No. 3, pp. 488–497. ISSN 0269-7491. DOI 10.1016/j.envpol.2007.03.017.
  8. Dvořáček, T. (2010) “Ekonomika bioplynových stanic pro zpracování BRO” (Economics of bio- gas stations for BRO processing, in Czech), Biom.cz. [Online]. Available: http://biom.cz/cz/ odborne-clanky/ekonomika-bioplynovych-stanic-pro-zpracovani-bro [Accessed: 14 July 2016]. ISSN 1801-2655.
  9. Escolano, V. A. and Rosa, E. P. (2005) “Análisis de las emisiones de CO2 y sus factores explicativos en las deferentes áreas del mundo”, Revista de Economía Crítica, Vol. 4, pp. 17-37. ISSN 1696-0866.
  10. EEA European Environment Agency (2013) „Trends and Projections in Europe 2013“, EEA European Environment Agency, Aug. 2006. [Online]. Available: http://www.eea.europa.eu/ publications/trends-and-projections-2013 [Accessed: 23 Jan. 2015].
  11. Fuksa, P. and Hakl, J. (2009) “Využití pícních plodin pro výrobu bioplynu” (Use of fodder crops for bio-gas production, in Czech), Biom.cz. [Online]. Available: http://biom.cz/cz/odborne-clanky/ vyuziti-picnich-plodin-pro-vyrobu-bioplynu [Accessible: 28 July 2016]. ISSN 1801-2655.
  12. Galloway, J. N., Burke, M., Bradford, G. E., Naylor, R., Falcon, W., Chapagain, A. K., Gaskell, J. C., McCullough, E., Mooney, H. A., Oleson, K. L. L., Steinfeld, H., Wassenaar, T. and Smil, V. (2007) „International trade in meat: the tip of the pork chop“, Ambio, Vol. 36, pp. 622–629. DOI 10.1579/0044-7447(2007)36[622:ITIMTT]2.0.CO;2.
  13. Herrero, M., Gerber, P., Vellinga, T., Garnett, T., Leip, A., Opio, C., Westhoek, H., Thornton, P., Olesen, J., Hutchings, N., Montgomery, H., Soussana, J., Steinfeld, H. and McAllister, T. (2011) „Livestock and greenhouse gas emissions: the importance of getting the numbers right“, Animal Feed Science and Technology, Vol. 166 - 167, pp. 779–782. ISSN 0377-8401. DOI 10.1016/j.anifeedsci.2011.04.083.
  14. Herrero, M., Thornton, P. K., Kruska, R. and Reid, R. S. (2008) “Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030”, Agriculture Ecosystems and Environment, Vol. 126, No. 1–2, pp. 122–137. ISSN 0167-8809. DOI 10.1016/j.agee.2008.01.017.
  15. Johnson, J. M. F., Franzluebbers, A., Weyers S. L. and Reicosky, D. C. (2007) “Agricultural opportunities to mitigate greenhouse gas emissions”, Environmental Pollution, Vol. 150, pp. 107–124. ISSN 0269-7491. DOI 10.1016/j.envpol.2007.06.030.
  16. Jørgensen, U., Dalgaard T. and Kristensen E. S. (2005) “Biomass energy in organic farming – the potential role of short rotation coppice”, Biomass and Bioenergy, Vol. 28, pp. 237–248. ISSN 0961-9534. DOI 10.1016/j.biombioe.2004.08.006.
  17. Kang, J. Y., Kang, D. W., Kim, T. S. and Hur, K. B. (2014) “Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems”, Applied thermal engineering,Vol.70, No.1,pp.723-731.ISSN1359-4311. DOI 10.1016/j.applthermaleng.2014.05.085.
  18. Mahesh, A. and Shoba Jasmin, K. S. (2013) “Role of renewable energy investment in India: An alternative to CO2 mitigation”, Renewable and sustainable energy reviews, Vol. 26, pp. 414-424. ISSN 1364-0321. DOI 10.1016/j.rser.2013.05.069.
  19. Mel, M., Young, A. S., Ihsan, S. I. and Setyobudi, R. H. (2015) “Simulation study for economic analysis of biogas production from agricultural biomass”, Energy Procedia, Vol. 65, pp. 204-214. ISSN 1876-6102. DOI 10.1016/j.egypro.2015.01.026.
  20. Mužík, O. and Abrham, Z. (2006) “Economic modelling of biogas production”, Conference in: Management of Production Systems with support of Information Technologies and Control Engineering. Nitra, 2006, pp. 196-201. ISBN 80-8069-743-4
  21. Oenema, O., Wrage, N., Velthof, G., Groenigen, J., Dofing, J. and Kuikman, J. (2005) “Trends in global nitrous oxide emissions from animal production systems”, Nutrient Cycling in Agroecosystems, Vol. 72, pp. 51–65. ISSN 1385-1314. DOI 10.1007/s10705-004-7354-2.
  22. Petersen, S. O., Amon, B. and Gattinger, A. (2005) “Methane oxidation in slurry storage surface crusts”, Journal of Environmental Quality, Vol. 34, pp. 455–461. ISSN 1537-2537.
  23. Rehl, T. and Muller, J. (2013) “CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways”, Journal of Environmental Management, Vol. 114, pp. 13–25. ISSN 0301-4797. DOI 10.1016/j.jenvman.2012.10.049.
  24. Rehl, T. and Muller, J. (2013) “CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways”, Journal of Environmental Management, Vol. 114, pp. 13–25. ISSN 0301-4797. DOI 10.1016/j.jenvman.2012.10.049.
  25. Solazzo, R., Donati, M., Tomasi, L. and Arfini, F. (2016) “How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy”, Science of The Total Environment, Vol. 573, pp. 1115-1124. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2016.08.066.
  26. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V. and Rosales, M. (2006) “Livestock's long shadow - Environmental issues and options”, Food and Agriculture organization. ISBN 978-92-5-105571-7.
  27. Tubiello, F. N., Cóndor-Golec, R. D., Salvatore, M., Piersante, A., Federici, S., Ferrara, A., Rossi, S., Flammini, A., Cardenas, C., Biancalani, R., Jacobs, H., Prasula, P. and Prosperi P. (2015) „Estimating Greenhouse Gas Emissions in Agriculture: a Manual to Address Data Requirements for Developing Countries“, Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-108674-2.
  28. Wu, B., Zhang, X., Shang, D., Bao, D., Zhang, S. and Zheng, T. (2016) “Energetic-environmental- economic assessment of the biogas system with three utilization pathways: combined heat and power, biomethane and fuel cell”, Bioresource technology. Vol. 214, pp. 722-728. ISSN 0960-8524. DOI 10.1016/j.biortech.2016.05.026.
  29. Yamaji, K., Ohara, T. and Akimoto, H. (2004) “Regional-specific emission inventory for NH3, N2O, and CH4 via animal farming in south, southeast, and East Asia”, Atmospheric Environment, Vol. 38, pp. 7111–7121. ISSN 1352-2310. DOI 10.1016/j.atmosenv.2004.06.045.
  30. Zhang, L. X., Wang, C. B. and Song, B. (2013) “Carbon emission reduction potential of a typical household biogas system in rural China”, Journal of cleaner production, Vol. 47, pp. 415-421. ISSN 0959-6526. DOI 10.1016/j.jclepro.2012.06.021.

Full paper

  Full paper (.pdf, 340.11 KB).