Data-Driven Optimisation of Irrigation Dose Using Machine-Learning Ensembles for Sustainable European Agriculture
DOI 10.7160/aol.2025.170407
No 4/2025, December
pp. 81-99
Palková, Z., Žitňák, M., Valíček, J., Harničárová, M., Holý, M, Levák, D., Tozan, H. and Görči, K. (2025) "Data-Driven Optimisation of Irrigation Dose Using Machine-Learning Ensembles for Sustainable European Agriculture", AGRIS on-line Papers in Economics and Informatics, Vol. 17, No. 4, pp. 81-99. ISSN 1804-1930 DOI 10.7160/aol.2025.170407.
Abstract
This study focuses on predicting irrigation doses using digital technologies and statistical modelling to enhance water resource management in agriculture. Conducted as part of the CODECS project in the semi-arid Nitra region of Slovakia, this study aimed to evaluate the effectiveness of various irrigation systems and to develop predictive models for optimal irrigation doses. The methodology integrates environmental sensor data, agronomic models, and machine learning techniques, utilizing IoT sensors alongside Valley and Irriga control software. A significant challenge was the incompatibility of heterogeneous data from different sources, leading to the creation of a unified method-ology for data collection, validation, and analysis. Analytical tools, such as ex-ploratory data analysis, correlation techniques, and regression models, were employed to identify key factors affecting irrigation efficiency, including precipitation, temperature, soil moisture, and energy consumption. The findings aim to inform sustainable irrigation strategies that reduce water usage, enhance crop productivity, and safeguard soil resources under changing climatic con-ditions.
Keywords
Artificial irrigation, digital agriculture, machine learning, data, statistical modelling, smart farming
References
- Abdelmoneim, A. A., Kimaita, H. N., Al Kalaany, C. M., Derardja, B., Dragonetti, G. and Khadra, R. (2025) "IoT Sensing for Advanced Irrigation Management: A Systematic Review of Trends, Challenges, and Future Prospects, Sensors, Vol. 25, No. 7, p. 2291. ISSN 1424-8220 DOI 10.3390/S25072291/S1.
- Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Rahman, M. K. I. A., Otuoze, A. O., Onotu, P. and Ramli, M. S. A. (2020) "A review on monitoring and advanced control strategies for precision irrigation", Computers and Electronics in Agriculture, Vol. 173, p. 105441. E-ISSN 1872-7107 DOI 10.1016/J.COMPAG.2020.105441.
- Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A. S., Yerima, O. and Nasirahmadi, A. (2022) "Precision Irrigation Management Using Machine Learning and Digital Farming Solutions", AgriEngineering, Vol. 4, No. 1. pp.70-103. E-ISSN 2624-7402 DOI 10.3390/AGRIENGINEERING4010006.
- Ahmed, A. A., Sayed, S., Abdoulhalik, A., Moutari, S. and Oyedele, L. (2024) "Applications of machine learning to water resources management: A review of present status and future opportunities", Journal of Cleaner Production, Vol. 441, p. 140715. E-ISSN 1879-1786 DOI 10.1016/J.JCLEPRO.2024.140715.
- Akkem, Y., Biswas, S. K. and Varanasi, A. (2023) "Smart farming using artificial intelligence: A review", Engineering Applications of Artificial Intelligence, Vol. 120. E-ISSN 1873-6769, ISSN 0952-1976 DOI 10.1016/J.ENGAPPAI.2023.105899.
- Allen, R., Pereira, L., Raes, D. and Smith, M. (2006) "Parte C. Evapotranspiración del cultivo en condiciones no estándar ET c bajo condiciones de estrés hídrico. Evapotranspiración Del Cultivo Guías Para La Determinación de Los Requerimientos de Agua de Los Cultivos. ESTUDIO FAO RIEGO Y DRENAJE, Vol. 56., 48 p. ISSN 0254-5293. (In Spanish)
- Arulraj, B. and Karthikeyan, N. (2024) "Machine learning approaches for irrigation scheduling: A comprehensive review", Computers and Electronics in Agriculture, Vol. 2018. ISSN 0168-1699
- Bastola, S., Murphy, C. and Sweeney, J. (2011) "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments", Advances in Water Resources, Vol. 34, No. 5, pp. 562-576. E-ISSN 1872-9657 DOI 10.1016/J.ADVWATRES.2011.01.008.
- Bellingham, K., Thompson, J. and Rodriguez, A. (2023) "Deep learning approaches for soil moisture prediction in precision irrigation", Computers and Electronics in Agriculture, Vol. 208. ISSN 0168-1699
- Bhat, S. A. and Huang, N. F. (2021) "Big Data and AI Revolution in Precision Agriculture: Survey and Challenges", IEEE Access, Vol. 9, pp. 110209-110222. ISSN 2169-3536 DOI 10.1109/ACCESS.2021.3102227.
- Bwambale, E., Abagale, F. K. and Anornu, G. K. (2022) "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review", Agricultural Water Management, Vol. 260. ISSN 1873-2283 DOI 10.1016/j.agwat.2021.107324.
- Crystal-Ornelas, R., Varadharajan, C., O’Ryan, D., Beilsmith, K., Bond-Lamberty, B., Boye, K., Burrus, M., Cholia, S., Christianson, D. S., Crow, M., Damerow, J., Ely, K. S., Goldman, A. E., Heinz, S. L., Hendrix, V. C., Kakalia, Z., Mathes, K., O’Brien, F., Pennington, S. C., Robles, E., Rogers, A., Simmonds, M., Velliquette, T., Weisenhorn, P., Welch, J. N., Whitenack, K. and Agarwal, D. A. (2022) "Enabling FAIR data in Earth and environmental science with community-centric (meta)data reporting formats", Scientific Data, Vol. 9, No. 1, p. 700. ISSN 2052-4463 DOI 10.1038/s41597-022-01606-w.
- Dong, Y., Werling, B., Cao, Z. and Li, G. (2024) "Implementation of an in-field IoT system for precision irrigation management", Frontiers in Water, Vol. 6, p. 1353597. ISSN 2624-9375 DOI 10.3389/FRWA.2024.1353597/BIBTEX.
- Gao, H., Liu, J., Wang, H., Mei, C. and Wang, J. (2024) "Estimation of irrigated crop artificial irrigation evapotranspiration in China", Scientific Reports, Vol. 14, Vol. 1, p. 16142. ISSN 2045-2322 DOI 10.1038/s41598-024-67042-5.
- García, L., Parra, L., Jimenez, J. M., Lloret, J. and Lorenz, P. (2020) "IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture", Sensors, Vol. 20, No. 4, p. 1042. ISSN 1424-8220 DOI 10.3390/S20041042.
- Hamami, L. and Nassereddine, B. (2020) "Application of wireless sensor networks in the field of irrigation: A review", Computers and Electronics in Agriculture, Vol. 179, p. 105782. ISSN 0168-1699 DOI 10.1016/j.compag.2020.105782.
- Hossain, M. S. (2023) "Advanced machine learning techniques for irrigation optimisation in canal systems", Water Resources Management, Vol. 37, pp. 3241-3258. ISSN 1573-1650
- Jensen, M. E., Burman, R. D. and Allen, R. G. (eds.) (1990) "Evapotranspiration and Irrigation Water Requirements: A Manual", ASCE Manuals and Reports on Engineering Practice No. 70. ASCE Manuals and Reports on Engineering Practice No. 70, The Society, 332 p. ISBN 9780872627635
- Jihani, N., Kabbaj, M. N., Benbrahim, M. and Jerbi, M. (2024) "A systematic review on smart irrigation management systems using machine learning: Current trends and future per-spectives", Information Processing in Agriculture, Vol. 11, pp. 306-325. E-ISSN 2214-3173
- Jones H. G. (2024) "Advances in precision irrigation: integrating AI and remote sensing", Agriculture, Vol. 14, No. 2. ISSN 2077-0472
- Karray, F., Jmal, M. W., Garcia-Rodriguez, J., Aloui, Z. and Obaid, A. J. (2020) "A comprehensive survey on wireless sensor networks", Future generation computer systems, Vol. 109, pp. 1-22. E-ISSN 1872-7115, ISSN 0167-739X DOI 10.1016/j.comnet.2018.05.010.
- Kaur, A., Bhatt, D. P. and Raja, L. (2024) "Developing a Hybrid Irrigation System for Smart Agriculture Using IoT Sensors and Machine Learning in Sri Ganganagar, Rajasthan", Journal of Sensors, Vol. 1, p. 6676907. E-ISSN 1687-7268, ISSN 1687-725X DOI 10.1155/2024/6676907.
- Kersebaum, K. C., Hecker, J.-M., Mirschel, W. and Wegehenkel, M. (2007) "Modelling water and nutrient dynamics in soil–crop systems: a comparison of simulation models applied on common data sets", In Modelling Water and Nutrient Dynamics in Soil–Crop Systems, Springer, Dordrecht, pp. 1-17. ISBN 978-1-4020-4478-6 DOI 10.1007/978-1-4020-4479-3_1.
- Khan, S., Tariq, R., Yuanlai, C. and Blackwell, J. (2006) "Can irrigation be sustainable?", Agricultural Water Management, Vol. 80, No. 1-3 Sp. Iss., pp. 87-99. ISSN 1873-2283 DOI 10.1016/J.AGWAT.2005.07.006.
- Kumar Kasera, R., Gour, S. and Acharjee, T. (2024) "A comprehensive survey on IoT and AI based applications in different pre-harvest, during-harvest and post-harvest activities of smart agriculture", Computers and Electronics in Agriculture, Vol. 216, p. 108522. ISSN 0168-1699 DOI 10.1016/J.COMPAG.2023.108522.
- Moriasi, D. N., Arnold, J. G., Liew, M. W., Van, Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007) "Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations", Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. E-ISSN 2151-0040 DOI 10.13031/2013.23153.
- Palková, Z. and Rodny, M. (2018) "Stochastic modelling of irrigation processes", Water Resources Management, pp. 2849-2863. E-ISSN 1573-1650
- Prasath, B. and Akila, M. (2023) "IoT-based pest detection and classification using deep features with enhanced deep learning strategies", Engineering Applications of Artificial Intelligence, Vol. 121, p. 105985. ISSN 1873-6769 DOI 10.1016/J.ENGAPPAI.2023.105985.
- Raouhi, E. M., Zouizza, M., Lachgar, M., Zouani, Y., Hrimech, H. and Kartit, A. (2023) "AIDSII: An AI-based digital system for intelligent irrigation", Software Impacts, Vol. 17, p. 100574. ISSN 2665-9638 DOI 10.1016/J.SIMPA.2023.100574.
- Sharma, A., Jain, A., Gupta, P. and Chowdary, V. (2021) "Machine Learning Applications for Precision Agriculture: A Comprehensive Review", IEEE Access, Vol. 9, pp. 4843–4873. ISSN 2169-3536 DOI 10.1109/ACCESS.2020.3048415.
- Sithartan, R., Rajesh, M., Shanmuganathan, V., Eswaran, V., Eswaran, S. K., Yuvaraj, S., Kumar, A., Raglend, J. and Vengatesan, K. (2023) "A novel autonomous irrigation system for smart agriculture using AI and 6G enabled IoT network", Microprocessors and Microsystems, Vol. 101, pp. 104905. ISSN 0141-9331 DOI 10.1016/J.MICPRO.2023.104905.
- FAO (2021) "The State of the World’s Land and Water Resources for Food and Agriculture – Systems at breaking point (SOLAW 2021)", Synthesis report 2021, book, 82 p. ISBN 978-92-5-135327-1 DOI 10.4060/CB7654EN.
- Umutoni, L. and Samadi, V. (2024) "Application of machine learning approaches in supporting irrigation decision making: A review", Agricultural Water Management, Vol. 294, p. 108710. ISSN 1873-2283 DOI 10.1016/J.AGWAT.2024.108710.
- Vallejo-Gómez, D., Osorio, M. and Hincapié, C. A. (2023) "Smart Irrigation Systems in Agriculture: A Systematic Review", Agronomy, Vol. 13, No. 2, 342 p. ISSN 2073-4395 DOI 10.3390/AGRONOMY13020342.
- Wakchaure, M., Patle, B. K. and Mahindrakar, A. K. (2023) "Application of AI techniques and robotics in agriculture: A review", Artificial Intelligence in the Life Sciences, Vol. 3, p. 100057. E-ISSN 2667-3185 DOI 10.1016/J.AILSCI.2023.100057.
- Wei, H., Xu, W., Kang, B., Eisner, R., Muleke, A., Rodriguez, D., de Voil, R., Sadras, V., Monjardino, M. and Harrison, M. T. (2024) "Irrigation with Artificial Intelligence: Problems, Premises, Promises", Human-Centric Intelligent Systems, Vol. 4, No. 2, pp. 187-205. E-2667-1336 DOI 10.1007/S44230-024-00072-4.