Fuzzy Logic for Yield Prediction: Enhancing Decision-Making in Agricultural Economics
DOI 10.7160/aol.2025.170303
No 3/2025, September
pp. 27-36
Imamguluyev, R., Gurbanov, A., Jabbarov, A., Hasanova, S., Rasulova, G., Karimova, S., Khalilova, J., Azizova, R. and Tahirova, L. (2025) "Fuzzy Logic for Yield Prediction: Enhancing Decision-Making in Agricultural Economics", AGRIS on-line Papers in Economics and Informatics, Vol. 17, No. 3, pp. 27-36. ISSN 1804-1930. DOI 10.7160/aol.2025.170303.
Abstract
Accurate yield prediction is essential for optimizing decision-making in agricultural economics, enabling stakeholders to manage resources efficiently and respond to market demands. Traditional yield prediction models often struggle to handle the uncertainties and complexities inherent in agricultural systems, such as weather variability, soil conditions, and crop characteristics. This study introduces a fuzzy logic-based approach to yield prediction, offering a more flexible and robust method for addressing these uncertainties. By utilizing fuzzy sets and rules, the proposed model captures the intricate relationships between multiple factors influencing crop yield. The research demonstrates how fuzzy logic can enhance the accuracy and reliability of yield predictions, providing valuable insights for farmers, policymakers, and agricultural economists. Results indicate that this approach significantly improves decision-making processes in agricultural planning and risk management, making it a valuable tool for sustainable agricultural practices.
Keywords
Yield prediction, fuzzy logic, agricultural economics, decision-making, crop yield, uncertainty modeling.
References
- El-Tabakh, M. A. M., Abd El-Samea, M. A., Roby, Y. A., Mohamed, Y. A., Harb, H. E., Ahmed, M. S., Abd El-Aziz, M. H. and El-Abeid, S. E. (2024) "Digital Agriculture for Enhancing Yield, Nutrition, and Biological Stress Resistance". In: "Digital Agriculture". Cham: Springer. pp. 445- 483. DOI 10.1007/978-3-031-43548-5_15.
- Banerjee, R., Bharti, Das, P., Khan, S. (2024) "Crop Yield Prediction Using Artificial Intelligence and Remote Sensing Methods", In: Pandey, K., Kushwaha, N. L., Pande, C. B., Singh, K. G. (eds) "Artificial Intelligence and Smart Agriculture. Advances in Geographical and Environmental Sciences". Springer, Singapore. ISBN 978-981-97-0340-1. DOI 10.1007/978-981-97-0341-8_6.
- Efremova, N., Foley, J. C., Unagaev, A. and Karimi, R. (2023) "AI for Sustainable Agriculture and Rangeland Monitoring", In: Mazzi, F. and Floridi, L. "The Ethics of Artificial Intelligence for the Sustainable Development Goals". Springer Verlag. pp. 159-170. ISBN 13 978-3031211461. DOI 10.1007/978-3-031-21147-8_22.
- Mohanned, H., Khalil, A., Sulima, M., Ashraf, A., Abdelgalal, O. and Azhari, A. (2024) "Applied Statistics with Single-Valued Neutrosophic Fuzzy Soft Expert Sets for Market Trend Forecasting Model", International Journal of Neutrosophic Science, Vol. 24, No. 1., pp. 159-170. ISSN 2690-6805. DOI 10.54216/IJNS.240115.
- Das, A., Debnath, B., Sengupta, A., Das, A. and De, D. (2024) "Sustainability Analysis of FarmFox IoT Device Towards Agriculture 5.0", Environmental Development and Sustainability, ISSN 1387-585X. DOI 10.1007/s10668-024-05356-0.
- Kumari, S., Venkatesh, V. G., Tan, F. T. C., Bharathi, S. V., Muthurathnasabapathy, R and Shi, Y. (2023) "Application of Machine Learning and Artificial Intelligence on Agriculture Supply Chain: A Comprehensive Review and Future Research Directions", Annals of Operations Research. E-ISSN 1572-9338. DOI 10.1007/s10479-023-05556-3.
- Roy, T. and George, K. J. (2020) "Precision Farming: A Step Towards Sustainable, Climate-Smart Agriculture", In: Venkatramanan, V., Shah, S., Prasad, R. (eds) "Global Climate Change: Resilient and Smart Agriculture", Springer, Singapore. ISBN 978-981-32-9855-2. DOI 10.1007/978-981-32-9856-9_10.
- Rangasamy, S., Rajamohan, K., Janardhanan, A. K. and Manu, K. S. (2023) "The Role of Financial Analytics in Decision-Making for Better Firm Performance", In: Sharma, V., Maheshkar, Ch. and Poulose, J. (ed.) "Analytics Enabled Decision Making", pp. 139-169, Springer. ISBN 9789811996573. DOI 10.1007/978-981-19-9658-0_7.
- Korol, T. (2024) "Multi-factor Fuzzy Sets Decision System Forecasting Consumer Insolvency Risk", Decision, Vol. 51, pp. 279-302. E-ISSN 2197-1722. DOI 10.1007/s40622-024-00399-8.
- Polekhina, K. A. and Polekhina, G. E. (2024) "Modeling Financial Market Dynamics with the Use of Fuzzy", Vestnik Universiteta, Vol. 7, pp. 170-180. E-ISSN 2686-8415. DOI 10.26425/1816-4277-2024-7-170-180.
- Adilova, N. E. (2020) "Consistency of Fuzzy If-Then Rules for Control System", In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F. (eds) "10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019. ICSCCW 2019. Advances in Intelligent Systems and Computing", Vol. 1095. Springer ISBN 978-3-030-35248-6. DOI 10.1007/978-3-030-35249-3_17.
- Tóth, L., Olejár, M., Hrubý, D., Paulovič, S. and Pap, M. (2013) "The Ways of Fuzzy Control Algorithms Using for Harvesting Machines Tracking", AGRIS on-line Papers in Economics and Informatics, Vol.5, No. 3, pp. 87-95. ISSN 1804-1930.
- Imamguluyev, R., Hashim, S. B. and Hajiyev, I. (2024) "Harnessing Uncertainty: Integrating Fuzzy Logic into Machine Learning Algorithms",. In: "4th International Conference on Pervasive Computing and Social Networking (ICPCSN)", Salem, India, pp. 510-514. ISBN 979-835-038-6356. DOI 10.1109/ICPCSN62568.2024.00086.
- Tohidi, A., Ghorbani, M., Karbasi, A. R., Asgharpourmasouleh, A. and Hassani-Mahmooei, B. (2020) "Comparison of Fuzzy Multi-Criteria Decision-Making Methods to Rank Business Strategies and Marketing Resources", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 3, pp. 101-114. ISSN 1804-1930. DOI 10.7160/aol.2020.120309.
- Zadeh, L. A. and Aliev, R. (2018) "Fuzzy Logic Theory and Applications: Part I and Part II", 612 p. ISBN 13 978-9813238176. DOI 10.1142/10936.
- Imamguluyev, R., Abbasov, I., Sadigov, R., Imanova, T., Sharifli, I, Bagirov, G., Nabizade, K., Musayev, J(2024) "Smart Decision-Making in the Green Economy: A Fuzzy Logic Approach", In: "Computing and Machine Learning", Proceedings of CML 2024, Vol. 3. Part of the book series: Lecture Notes in Networks and Systems, Vol. 856, ISBN 978-981-97-7548-4. DOI 10.1007/978-981-97-7571-2_13.
- Nová k, V., Pavlí k, J., Stoč es, M., Vaně k, J. and Jarolí mek, J. (2020) "Welfare with IoT Technology Using Fuzzy Logic", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 2, pp. 111-118. ISSN 1804-1930. DOI 10.7160/aol.2020.120210.
- Aliev, R. A. and Aliev, R. R. (2001) "Soft Computing and Its Applications", Singapore: World Scientific. 460 p. ISBN 978-981-02-4700-3.
- Ramiz, A. and Vuqar, S. (2022) "Assessment of the Effectiveness of Marketing Activities of Commercial Enterprises Using the Theory of Fuzzy Sets", In: Kahraman, C., Tolga, A. C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U. (eds) "Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems, Vol 504. Springer, Cham. ISBN 978-981-97-7548-4. DOI 10.1007/978-3-031-09173-5_18.
- Imamguluyev, R., Hajiyev, A., Imanova, T. and Hajiyev, I. (2024) "Navigating Economic Uncertainty: A Fuzzy Logic Approach". In: Kahraman, C., Cevik Onar, S., Cebi, S., Oztaysi, B., Tolga, A. C., Ucal Sari, I. (eds) "Intelligent and Fuzzy Systems. INFUS 2024. Lecture Notes in Networks and Systems", vol 1089. Springer, Cham. ISBN 978-981-97-7548-4. DOI 10.1007/978-3-031-67195-1_11.
- FAO, Food and Agriculture Organization. (2023) "FAOSTAT: Agricultural Data". [Online]. Available: https://www.fao.org/faostat/en/ [Accessed: Nov. 24, 2024].
- National Meteorological Service of Azerbaijan. (2023) "Weather Reports and Agricultural Climate Monitoring". [Online]. Available: https://climatereport.az/section/general-knowladge [Accessed: Oct. 16, 2024].
- Azerbaijan State Soil and Agrochemical Research Institute. (2023). Soil and Crop Condition Monitoring Reports. [Online]. Available: https://www.agrosoil.az [Accessed: Oct. 16, 2024].