Major Crops Water Requirements and Automated Irrigation Scheduling System

DOI 10.7160/aol.2025.170104
No 1/2025, March
pp. 41-50

Kaur, A., Bhatt, D. P. and Raja, L. (2025) "Amajor Crops Water Requirements and Automated Irrigation Scheduling System", AGRIS on-line Papers in Economics and Informatics, Vol. 17, No. 1, pp. 41-50. ISSN 1804-1930. DOI 10.7160/aol.2025.170104.

Abstract

Agriculture is a critical factor that impacts a country's economy. The agriculture sector uses 70% of the available fresh water. There are challenges in water management and irrigation scheduling that require resolution. Farmers are using traditional irrigation methods that use a lot of water with low water efficiency. Smart irrigation and farm management technology is crucial to sustainable agriculture, as it saves water and provides farmers with more information about crop water requirements. However, managing irrigation water is a complex task that depends on factors such as soil, weather, and environment. Robust modeling is necessary to accurately estimate the water requirements of a crop. In this we developed a smart irrigation model to automate the irrigation system according to water requirements of crops. To estimate the water requirements of crops a review was done on different crop water requirements and crops features. To develop the automated irrigation system an analysis is done on different irrigation methods, irrigation scheduling and requirements of irrigation scheduling. The proposed system is used to automated irrigation system and real time data is sent to think speak server for regular monitoring. The developed automated irrigation system is working up to expectations and help farmers to control the irrigation and conserve water by avoiding over irrigation.

Keywords

Internet of Things, water management, IoT, sensors, smart griculture, Irrigation Efficiency.

References

  1. Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., Abidin, M. S. Z., Ayobami, A.S ., Yerima, O. and Nasirahmadi, A. (2022) "Precision Irrigation Management Using Machine Learning and Digital Farming Solutions", AgriEngineering, Vol. 4, pp. 70-103, No. 1. E-ISSN I2624-7402. DOI 10.3390/AGRIENGINEERING4010006.
  2. Abo-Zahhad, M. M. (2023) "IoT-Based Automated Management Irrigation System Using Soil Moisture Data and Weather Forecasting Adopting Machine Learning Technique", Sohag Engineering Journal, Vol. 3, No. 2, pp. 122-140. E-ISSN 2735-5896, ISSN 2735-5888. DOI 10.21608/SEJ.2023.209528.1037.
  3. Bakhshoodeh, R., Ocampo, C. and Oldham, C. (2022) "Evapotranspiration rates and evapotranspirative cooling of green façades under different irrigation scenarios", Energy and Buildings, Vol. 270, pp. 1-10. ISSN 0378-7788. DOI 10.1016/J.ENBUILD.2022.112223.
  4. Boutsioukis, C. and Arias-Moliz, M. T. (2022) "Present status and future directions – irrigants and irrigation methods", International Endodontic Journal, Vol. 55, No. S3, pp. 588-612. ISSN 0143-2885. DOI 10.1111/IEJ.13739.
  5. Burguete, J., Lacasta, A. and García-Navarro, P. (2014) "SURCOS: A software tool to simulate irrigation and fertigation in isolated furrows and furrow networks", Computers and Electronics in Agriculture, Vol. 103, pp. 91-103. ISSN 0168-1699. DOI 10.1016/J.COMPAG.2014.02.004.
  6. Cetin, O. and Bilgel, L. (2002) "Effects of different irrigation methods on shedding and yield of cotton", Agricultural Water Management, Vol. 54, No. 1, pp. 1-15. E-ISSN 1873-2283. DOI 10.1016/S0378-3774(01)00138-X.
  7. Dari, J., Quintana-Seguí, P., Morbidelli, R., Saltalippi, C., Flammini, A., Giugliarelli, E., Escorihuela, M. J., Stefan, V. and Brocca, L. (2022) "Irrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm", Agricultural Water Management, Vol. 265, No. 1, p. 107537. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2022.107537.
  8. Darouich, H., Karfoul, R., Ramos, T. B., Moustafa, A. and Pereira, L. S. (2022) "Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model", Water, Vol. 14, No. 13, pp. 1-12. E-ISSN 2073-4441. DOI 10.3390/W14132052.
  9. Dwijendra, N. K. A., Abbas, Z., Salih, S. M., Opulencia, M. J. C., Morozova, L., Sergushina, E. S., Asnan, M. N., Kadhim, M. M. and Kavitha, M. (2022) "The effect of various irrigation technologies and strategies on water resources management", Journal of Water and Land Development, Vol. 53, pp. 143-147, E-ISSN 2083-4535. DOI 10.24425/JWLD.2022.140790.
  10. Ferreira, L. B. and da Cunha, F. F. (2020) "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning", Agricultural Water Management, Vol. 234, No. 1, pp. 1-13. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2020.106113.
  11. Friedman, S. P., Communar, G. and Gamliel, A. (2016) "DIDAS – User-friendly software package for assisting drip irrigation design and scheduling", Computers and Electronics in Agriculture, Vol. 120, No. 1, pp. 36-52. ISSN 0168-1699. DOI 10.1016/J.COMPAG.2015.11.007.
  12. García-Vila, M. and Fereres, E. (2012) "Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level", European Journal of Agronomy, Vol. 36 ,No. 1, pp. 21-31. ISSN 1161-0301. DOI 10.1016/J.EJA.2011.08.003.
  13. Isern, D., Abelló, S. and Moreno, A. (2012) "Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation", Computers and Electronics in Agriculture, Vol. 87, No. 1, pp. 1-13. ISSN 0168-1699. DOI 10.1016/J.COMPAG.2012.04.007.
  14. Jackson, T. M., Hanjra, M. A., Khan, S. and Hafeez, M. M. (2011) "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture", Agricultural Systems, Vol. 104, No. 9, pp. 729-745. ISSN 0308-521X. DOI 10.1016/J.AGSY.2011.08.003.
  15. Jemal, K. and Berhanu, S. (2020) "Effect of Water Application Methods in Furrow Irrigation Along with Different Types of Mulches on Yield and Water Productivity of Maize (Zea mays l.) at Hawassa, Ethiopia", Journal of Natural Sciences Research, Vol. 10, No. 5, pp. 1-10. ISSN 2225-0921. DOI 10.7176/JNSR/10-5-01.
  16. Kondaveti, R., Reddy, A. and Palabtla, S. (2019) "Smart Irrigation System Using Machine Learning and IOT", Proceedings - International Conference on Vision Towards Emerging Trends in Communication and Networking, ViTECoN 2019, Institute of Electrical and Electronics Engineers Inc. ISBN 9781538693544. DOI 10.1109/VITECON.2019.8899433.
  17. Morris, M. R., Hussain, A., Gillies, M. H. and O’Halloran, N. J. (2015) "Inflow rate and border irrigation performance", Agricultural Water Management, Vol. 155, No. 1, pp. 76-86. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2015.03.017.
  18. Nasrullah, M., Liang, L. and Rizwanullah, M. (2023) "Estimating the efficiency gap of maize yield across different irrigation methods in Pakistan", Irrigation and Drainage, Vol. 72 No. 1, pp. 166-181. E-ISSN 1531-0361. DOI 10.1002/IRD.2750.
  19. Olivera-Guerra, L. E., Laluet, P., Altés, V., Ollivier, C., Pageot, Y., Paolini, G., Chavanon, E., Rivalland, V., Boulet, G., Villar, J.-M. and Merlin, O. (2023) "Modeling actual water use under different irrigation regimes at district scale: Application to the FAO-56 dual crop coefficient method", Agricultural Water Management, Vol. 278, pp. 1-10. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2022.108119.
  20. Pereira, L. S., Gonçalves, J. M., Dong, B., Mao, Z. and Fang, S. X. (2007) "Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China", Agricultural Water Management, Vol. 93, No. 3, pp. 109-122. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2007.07.004.
  21. Phocaides, A. (2007) "Handbook on Pressurized Irrigation Techniques", FAO, 288 p. ISBN 9789251058176.
  22. Ren, W., Xiang, Q., Yang, Y., Cui, H. and Dai, L. (2011) "Implement of Fuzzy Control for Greenhouse Irrigation", IFIP Advances in Information and Communication Technology, Vol. 344, pp. 267-274. ISSN 1868-422X. DOI 10.1007/978-3-642-18333-1_31.
  23. Saggi, M. K. and Jain, S. (2022) "A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches", Archives of Computational Methods in Engineering, Vol. 29, No. 6, pp. 4455-4478. E-ISSN 1886-1784. DOI 10.1007/S11831-022-09746-3.
  24. Seyedzadeh, A., Khazaee, P., Siosemardeh, A. and Maroufpoor, E. (2022) "Irrigation management evaluation of multiple irrigation methods using performance indicators", ISH Journal of Hydraulic Engineering, Vol. 28, No. 3, pp. 303-312. ISSN 0971-5010. DOI 10.1080/09715010.2021.1891470.
  25. Tace, Y., Tabaa, M., Elfilali, S., Leghris, C., Bensag, H. and Renault, E. (2022) "Smart irrigation system based on IoT and machine learning", Energy Reports, Vol. 8, No. 9, pp. 1025-1036. ISSN 2352-4847. DOI 10.1016/J.EGYR.2022.07.088.
  26. Torres-Sanchez, R., Navarro-Hellin, H., Guillamon-Frutos, A., San-Segundo, R., Ruiz-Abellón, M. C. and Domingo-Miguel, R. (2020) "A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques", Water, Vol. 12, pp. 548, Vol. 12 No. 2, pp. 1-10. E-ISSN 2073-4441. DOI 10.3390/W12020548.
  27. Zhang, T., Zou, Y., Kisekka, I., Biswas, A. and Cai, H. (2021) "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area", Agricultural Water Management, Vol. 243, No. 1, pp. 1-10. E-ISSN 1873-2283. DOI 10.1016/J.AGWAT.2020.106497.

Full paper

  Full paper (.pdf, 900.86 KB).