Hybrid Approaches for Irrigation Optimization Based on Weather Forecast: a Study on Reference Evapotranspiration Prediction in Beni Mellal

DOI 10.7160/aol.2024.160407
No 4/2024, December
pp. 87-97

Jdi, H., Moutaiuakil, K. E., Falih, N. and Doumi, K. (2024) "Hybrid Approaches for Irrigation Optimization Based on Weather Forecast: a Study on Reference Evapotranspiration Prediction in Beni Mellal", AGRIS on-line Papers in Economics and Informatics, Vol. 16, No. 4, pp. 87-97. ISSN 1804-1930. DOI 10.7160/aol.2024.160407.

Abstract

Accurate prediction of Reference Evapotranspiration (ET0) is vital for optimizing irrigation, thereby facilitating efficient water management and agricultural planning. This study compares three distinct methods for predicting ET0 using the FAO Penman-Monteith (FAO-PM), leveraging daily weather data collected over a span of 38 years, from 1984 to 2022. The first approach involves predicting ET0 directly based on actual ET0 values, while the second hybrid approach uses Recurrent Neural Networks (RNN) to predict Net Radiation, Temperature, Wind speed, and Dew Point Temperature. These predicted values are then utilized in the FAO-PM equation to calculate ET0 (RNN-FAO-PM). The third approach is another hybrid method that combines RNN for predicting the weather parameters, followed by the application of a well-trained Random Forest (RF) model that uses the predicted weather parameters as features to predict ET0 (RNN-RF). The performance of each method is evaluated using various metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values for both training and testing datasets. The results of this study reveal that the hybrid approaches demonstrate comparable performance for long-term prediction of ET0 of the period Spanning from 2020 to 2022 (3 years). These hybrid approaches slightly outperform the RNN method when applied solely on the ET0 time series. This finding contributes to the research in the area of water resource management, specifically in the context of irrigation optimization. It provides valuable insights that can inform agricultural decision-making in the Beni Mellal region, enabling more efficient and effective use of water resources for irrigation purposes.

Keywords

Reference evapotranspiration forecast, irrigation optimization, deep learning, weather forecast.

References

  1. Adnan, R. M., Salim, H., Zaher, M. Y., Shamsuddin S., Ozgur, K. and Binquan, L. (2020) "Prediction of Potential Evapotranspiration Using, Temperature-Based Heuristic Approaches", Sustainability, Vol. 13, No. 1, pp. 297. E-ISSN 2071-1050. DOI 10.3390/su13010297.
  2. Allen, R. G. (1977) "FAO Irrigation and Drainage Paper", FAO. ISBN 9789251011867.
  3. Allen, R. G, Smith, M., Pereira,L. S., Raes, D. and Wright, J. L. (2000) "Revised FAO Procedures for Calculating Evapotranspiration: Irrigation and Drainage Paper No. 56 with Testing in Idaho", conference proceedings Watershed Management and Operations Management 2000, pp. 1-10. DOI 10.1061/40499(2000)125.
  4. Amirashayeri, A., Behmanesh, J., Rezaverdinejad, V. and Attar, N. F. (2023) "Evapotranspiration Estimation Using Hybrid and Intelligent Methods", Soft Computing, Vol. 27, No. 14, pp. 9801-9821. ISSN 1433-7479. DOI 10.1007/s00500-023-07822-9.
  5. Bashir, R. N., Khan, F. A., Khan, A. A., Tausif,M., Abbas, M. Z., Shahid, M. M. A. and Khan, N. (2023) "Intelligent Optimization of Reference Evapotranspiration (ETo) for Precision Irrigation", Journal of Computational Science, Vol. 69, No. May, p. 102025. ISSN 1877-7503. DOI 10.1016/j.jocs.2023.102025.
  6. Das, S., Baweja, S. K., Raheja, A., Gill, K. K. and Sharda, R. (2023) "Development of Machine Learning-Based Reference Evapotranspiration Model for the Semi-Arid Region of Punjab, India", Journal of Agriculture and Food Research, Vol. 13, No. September, p.100640. ISSN 2666-1543. DOI 10.1016/j.jafr.2023.100640.
  7. Elbeltagi, A., Srivastava, A., Al-Saeedi, A. H., Raza, A., Abd-Elaty, I. and El-Rawy, M. (2023) "Forecasting Long-Series Daily Reference Evapotranspiration Based on Best Subset Regression and Machine Learning in Egypt", Water, Vol. 15, No. 6, pp. 1149. E-ISSN 2073-4441. DOI 10.3390/w15061149.
  8. Eliades, M., Bruggeman, A., Djuma, H., Christofi, C. and Kuells, C. (2022) "Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus Persica Var. Nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements", Water, Vol. 14, No. 5, pp. 734. E-ISSN 2073-4441. DOI 10.3390/w14050734.
  9. González Pérea, R., García, F. I., Poyato, C. E. and Díaz, J. A. R. (2023) "New Memory-Based Hybrid Model for Middle-Term Water Demand Forecasting in Irrigated Areas", Agricultural Water Management, Vol. 284, No. June, p. 108367. E-ISSN 1873-2283. DOI 10.1016/j.agwat.2023.108367.
  10. Hou, X., Fan, J. , Zhang, F., Hu, W., Yan, F., Xiao, C., Li, Y. and Cheng, H.(2022) "Determining Water Use and Crop Coefficients of Drip-Irrigated Cotton in South Xinjiang of China under Various Irrigation Amounts", Industrial Crops and Products, Vol. 176, No. Feb., p. 114376. ISSN 0926-6690. DOI 10.1016/j.indcrop.2021.114376.
  11. Jayashree, T. R., Reddy, N.V. S., Acharya, D. and Eslamian, S. (2023) "Prediction of Reference Crop Evapotranspiration: Empirical and Machine Learning Approaches", In: Eslamian, S. and Eslamian, F. (eds) "Handbook of Hydroinformatics", pp. 253-268. Elsevier. ISBN 9780128219614. DOI 10.1016/B978-0-12-821961-4.00007-5.
  12. Khatua, R. and Pasupalak, S. (2018) "Comparison of Methods for Estimation of Reference Evapotranspiration in North-Central Plateau Zone of Odisha", Indian Journal of Agricultural Research, Vol. 52, No. 2, pp. 187-190. ISSN 0367-8245. DOI 10.18805/IJARe.A-4702.
  13. Ling, Z., Shi, Z., Xia, T., Gu, S., Liang, J. and Xu, Ch.-Y. (2023) "Short-Term Evapotranspiration Forecasting of Rubber (Hevea Brasiliensis) Plantations in Xishuangbanna, Southwest China", Agronomy, Vol. 13, No. 4, p. 1013. E-ISSN 2073-4395. DOI 10.3390/agronomy13041013.
  14. Liu, X. and Yang, D. (2021) "Irrigation Schedule Analysis and Optimization under the Different Combination of P and ET0 Using a Spatially Distributed Crop Model", Agricultural Water Management, Vol. 256, No. Oct., p. 107084. E-ISSN 1873-2283. DOI 10.1016/j.agwat.2021.107084.
  15. Livellara, N., Saavedra, F. and Salgado, E. (2011) "Plant Based Indicators for Irrigation Scheduling in Young Cherry Trees", Agricultural Water Management, Vol. 98, No. 4, pp. 684-690. E-ISSN 1873-2283. DOI 10.1016/j.agwat.2010.11.005.
  16. Mininnia, A. N., Laterza, D., Tuzio, A. C., Di Biase, R. and Dichio, B. (2022) "Soil Water Content Monitoring as a Tool for Sustainable Irrigation Strategy in a Kiwifruit Orchard under Semi-Arid Conditions", Acta Horticulturae, Vol. 1332, pp.203-209. ISSN 0567-7572. DOI 10.17660/ActaHortic.2022.1332.27.
  17. Olberz, M., Kahlen, K. and J. Zinkernage, J. (2018) "Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation", Horticulturae, Vol. 4, No. 4. E-ISSN 2311-7524. DOI 10.3390/horticulturae4040049.
  18. Saggi, M. K., Jain, S., Bhatia, A. S. and Rakesh, R. (2023) "Proposition of New Ensemble Data-Intelligence Model for Evapotranspiration Process Simulation", Journal of Ambient Intelligence and Humanized Computing, Vol. 14, No.7, pp. 8881-8897. E-ISSN 1868-5145. DOI 10.1007/s12652-021-03636-5.
  19. Yildirim, D., Küçüktopcu, E., Cemek, B. and Simsek, H. (2023) "Comparison of Machine Learning Techniques and Spatial Distribution of Daily Reference Evapotranspiration in Türkiye", Applied Water Science, Vol. 13, No. 4, p. 107. E-ISSN 2190-5495. DOI 10.1007/s13201-023-01912-7.
  20. Yu, X., Qian, L., Wang, W., Huo, X., Hu, X. and Wang, Y. (2023) "Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products", Water, Vol. 15, No. 11, p. 2027. E-ISSN 2073-4441. DOI 10.3390/w15112027.
  21. Zheng, Z., Ali, M., Jamei, M., Xiang, Y., Karbasi, M., Yaseen, Z. M. and Farooque, A. A. (2023) "Design Data Decomposition-Based Reference Evapotranspiration Forecasting Model: A Soft Feature Filter Based Deep Learning Driven Approach", Engineering Applications of Artificial Intelligence, Vol. 121, No. May, p. 105984. E-ISSN 1873-6769. ISSN 0952-1976. DOI 10.1016/j.engappai.2023.105984.

Full paper

  Full paper (.pdf, 4.23 MB).