Analysing Household Food Consumption in Turkey Using Machine Learning Techniques

DOI 10.7160/aol.2024.160207
No 2/2024, June
pp. 97-105

Oztornaci, B., Ata, B. and Kartal, S. (2024) "Analysing Household Food Consumption in Turkey Using Machine Learning Techniques", AGRIS on-line Papers in Economics and Informatics, Vol. 16, No. 2, pp. 97-105. ISSN 1804-1930. DOI 10.7160/aol.2024.160207.

Abstract

The fluctuations in food prices have highlighted the significance of analysing the factors influencing household food consumption. Recent advancements in data analysis have opened new avenues for investigating this subject. While studies have employed novel data analysis methods to examine the factors impacting household food consumption, the effect of the chosen analysis method on the research outcome remains unexplored. In this study, we aimed to investigate household food consumption in Turkey between 2012-2019 using various data analysis techniques (Linear Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting, and Multi-Layer Perception). Our findings reveal that income emerged as the most influential factor in household food consumption across all methods. However, the impact of other factors varied depending on the method employed. This suggests that the method chosen to analyse factors other than income in studies of this nature can significantly impact the results. Researchers should exercise caution when selecting their analysis method.

Keywords

Machine learning, data analysis, food consumption, income.

References

  1. Akbay, C., Boz, I. and Chern, W. S. (2007) "Household food consumption in Turkey", European Review of Agricultural Economics, Vol. 34, No. 2, pp. 209-231. ISSN 0165-1587. DOI 10.1093/erae/jbm011.
  2. Bagarani M., Forleo M. B. and Zampino S. (2009) "Households food expenditures behaviours and socioeconomic welfare in Italy: A microeconometric analysis", Paper prepared for presentation at the 113th EAAE Seminar “A resilient European food industry and food chain in a challenging world”, Chania, Crete, Greece, date as in: September 3 - 6, 2009.
  3. Balli F. and Tiezzi S. (2010) "Equivalence scales, the cost of children and household consumption patterns in Italy", Review of Economics of the Household, Vol. 8, No. 4., pp. 527-549. ISSN 1569-5239. DOI 10.1007/s11150-009-9068-3.
  4. Boser, B. E., Guyon, I. M. and Vapnik,V. N. (1992) "A training algorithm for optimal margin classifiers", COLT '92: Proceedings of the fifth annual workshop on Computational learning theory, July 1992, pp. 144-152. DOI 10.1145/130385.130401.
  5. Breiman L., Friedman, J. H., Olshen, R. A. and Stone, Ch. J. (2017) "Classification and regression trees", Routledge. ISBN 9781315139470. DOI 10.1201/9781315139470.
  6. Breiman L. (2001) "Random Forests", Machine Learning, Vol. 45, No. 1, pp. 5-32. ISSN 0885-6125. DOI 10.1023/A:1010933404324.
  7. Chen, T. and Guestrin, C. (2016) "Xgboost: A scalable tree boosting system", KDD '16: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794. arXiv:1603.02754. DOI 10.1145/2939672.2939785.
  8. Clements, K. W. and Si, J. (2018) "Engel's law, diet diversity, and the quality of food consumption", American Journal of Agricultural Economics, Vol. 100, No. 1, pp. 1-22. ISSN 1467-8276. DOI 10.1093/ajae/aax053.
  9. Deléglise, H., Interdonato, R., Bégué, A., d’Hôtel, E. M., Teisseire, M. and Roche, M. (2022) "Food security prediction from heterogeneous data combining machine and deep learning methods", Expert Systems with Applications, Vol. 190, p. 116189. ISSN 0957-4174. DOI 10.1016/j.eswa.2021.116189.
  10. Engel, E. (1857) "Die Productions-Und Consumtionsver-Haltnise Des Konigreichs Sachsen", Zeitschrift Des Statistischen Bureaus Des Königlich Sächsischen Ministeriums Des Innern, Vol. 8, pp. 1-54.
  11. Goktolga, Z. G., Bal, S. G. and Karkacier, O. (2006) "Factors effecting primary choice of consumers in food purchasing: The Turkey case", Food Control, Vol. 17, No. 11, pp. 884-889. ISSN 0956-7135. DOI 10.1016/j.foodcont.2005.06.006.
  12. Grégoire, G. (2014) "Multiple linear regression", European Astronomical Society Publications Series, Vol. 66, pp. 45-72. E-ISSN 1638-1963, ISSN 1633-4760. DOI 10.1051/eas/1466005.
  13. Hill, T., Marquez, L., O'Connor, M. and Remus, W. (1994) "Artificial neural network models for forecasting and decision making", International Journal of Forecasting, Vol. 10, No. 1, pp. 5-15. ISSN 0169-2070. DOI 10.1016/0169-2070(94)90045-0.
  14. Holcomb, R. B., Park, J. L. and Capps, Jr. O. (1995) "Revisiting Engel's law: Examining expenditure patterns for food at home and away from home", Journal of Food Distribution Research, Vol. 26, No. 2, pp. 1-8. ISSN 2643-3354. DOI 10.22004/ag.econ.27224.
  15. Leser, C. E. V. (1963) "Forms of Engel functions", Econometrica", Vol. 31, No. 4, pp. 694-703. ISSN 0012-9682. DOI 10.2307/1909167.
  16. Lund, P. J. and Derry, B. J. (1985) "Household food consumption: the influence of household characteristics", Journal of Agricultural Economics, Vol. 36, No. 1, pp. 41-58. ISSN 0021-857X. DOI 10.1111/j.1477-9552.1985.tb00155.x.
  17. Martini, G., Bracci, A., Riches, L., Jaiswal, S., Corea, M., Rivers, J., Husain, A. and Omodei, E. (2022) "Machine learning can guide food security efforts when primary data are not available", Nature Food, Vol. 3, No. 9, pp. 716-728. ISSN 2662-1355. DOI 10.1038/s43016-022-00587-8.
  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011) "Scikit-learn: Machine learning in Python", The Journal of Machine Learning Research, Vol. 12, pp. 2825-2830. ISSN 1533-7928.
  19. Rae, A. N. (1999) "Food consumption patterns and nutrition in urban Java households: the discriminatory power of some socioeconomic variables", Australian Journal of Agricultural and Resource Economics, Vol. 43, No. 3, pp. 359-383. E-ISSN 1467-8489, ISSN 1364-985X. DOI 10.1111/1467-8489.00084.
  20. Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) "Learning representations by back-propagating errors", Nature, Vol. 323, pp. 533-536. ISSN 1476-4687. DOI 10.1038/323533a0.
  21. Staudigel, M. and Schröck, R. (2015) "Food demand in Russia: heterogeneous consumer segments over time", Journal of Agricultural Economics, Vol. 66, No. 3, pp. 615-639. ISSN 0118-6566, E-ISSN 1477-9552. DOI 10.1111/1477-9552.12102.
  22. Tiffin, A. and Tiffin, R. (1999) "Estimates of food demand elasticities for Great Britain: 1972–1994", Journal of Agricultural Economics, Vol. 50, No. 1, pp. 140-147. ISSN 0118-6566, E-ISSN 1477-9552. DOI 10.1111/j.1477-9552.1999.tb00800.x.
  23. Trafalis, T. B. and Gilbert, R. C. (2007) "Robust support vector machines for classification and computational issues", Optimisation Methods and Software, Vol. 22, No. 1, pp. 187-198. E-ISSN 1029-4937. DOI 10.1080/10556780600883791.
  24. Unnevehr, L., Eales, J., Jensen, H., Lusk, J., McCluskey, J. and Kinsey, J. (2010) "Food and consumer economics", American Journal of Agricultural Economics, Vol. 92, No. 2, pp. 506-521. ISSN 0002-9092. DOI 10.1093/ajae/aaq007.
  25. Vapnik, V. N. (2000) "The Nature of Statistical Learning Theory", New York, NY: Springer. 314 p. E-ISBN 978-1-4757-3264-1. DOI 10.1007/978-1-4757-3264-1.
  26. Working, H. (1943) "Statistical Laws of Family Expenditure", Journal of the American Statistical Association, Vol. 38, No. 221, pp. 43-56. ISSN 0162-1459. DOI 10.2307/2279311.
  27. Wang, C., Wu, Q., Weimer, M. and Zhu, E. (2021) "FLAML: A Fast and Lightweight AutoML Library", Proceedings of Machine Learning and Systems, Vol. 3, pp. 434-447. arXiv:1911.04706. ISSN 2640-3498. DOI 10.48550/arXiv.1911.04706.
  28. Xu, H., Caramanis, C. and Mannor, S. (2009) "Robustness and Regularization of Support Vector Machines", Journal of Machine Learning Research, Vol. 10, No. 7., pp. 1485-1510. E-ISSN 1533-7928.

Full paper

  Full paper (.pdf, 1.14 MB).