An Analysis of the Gross Domestic Product of Municipalities: a Spatial Glance into the State of Paraná-Brazil

DOI 10.7160/aol.2023.150202
No 2/2023, June
pp. 19-29

Cima, E. G., da Rocha-Junior, W. F., Uribe-Opazo, M. A. and Dalposso, G. H. (2023) "An Analysis of the Gross Domestic Product of Municipalities: A Spatial Glance into the State of Paraná-Brazil", AGRIS on-line Papers in Economics and Informatics, Vol. 15, No. 2, pp. 19-29. ISSN 1804-1930. DOI 10.7160/aol.2023.150202.


The vast relevance of applications of spatial regression models has recently captured the interest of Economics and Agriculture, in the sense of better understanding the spatial behavior of the region under study, in the different forms of approaches. It is interesting to understand why some regions show greater variability than others, and why some forms of regional development are better explained. It is up to the researcher to understand, explore, and organize a series of observations, so that it is possible to make predictions, diagnoses, and recommendations to public policy managers and regional development agents. The municipalities’ Gross Domestic Product (Gdp) has driven studies involving spatial information. The objective of this study was to analyze the Gdp of the municipalities in Paraná-Brazil, in 2018, regarding soybean yield, corn yield, pig production, and the tax on the circulation of goods, through different approaches of spatial regression models. SAR and CAR models are global models, while the GWR model is considered a local one. Three spatial analysis models were used to perform this study: Spatial Autoregressive (SAR), Conditional Autoregressive (CAR), and Geographically Weighted Regression (GWR). The results were compared using the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Cross-Validation Criterion (CVC), and the descriptive graphic of residual diagnoses-Worm Plot. The best result obtained was for the GWR model, which best explained the GDP of the state of Paraná-Brazil in terms of its covariates.


Agribusiness, economic scenario, production chains, development, spatial regression models.


  1. Almeida, E. (2012) "Econometria Espacial Aplicada", Alínea, pp. 498. ISBN 978-8575166017. (In Portuguese).
  2. Alves, E. D. L. and Galvani. E. (2021) "Modelagem Da Ilha De Calor Urbana De Superfície Utilizando Regressão Geograficamente Ponderada (GWR)", Revista Brasileira de Climatologia, Vol. 28, No. 17, pp. 718-742. E-ISSN 2237-8642 DOI 10.5380/abclima.v28i0.76786.
  3. Bailey, T. C. and Gatrell, A. C. (1995) "Interactive Spatial Data Analysis", Routledge, 432 p. ISBN 978-0582244931.
  4. Balland, P. A., Jara-Figueroa, C., Petralia, S. G., Steijn, M. P. A., Rigby, D. L. and Hidalgo, C. A. (2020) "Complex economic activities concentrate in large cities", Nature Human Behaviour, Vol. 4, pp. 248-254. E-ISSN 2397-3374 DOI 10.1038/s41562-019-0803-3.
  5. Baller, R. D., Anaselin, L., Messner, S. F., Deane, G. and Hawkins, D. F. (2001) "Structural Covariates of U.S. County Homicide Rates: Incorporating Spatial Effects", Criminology, Vol. 39, No. 3, pp. 561-588. E-ISSN 1745-9125, ISSN 0011-1384 DOI 10.1111/j.1745-9125.2001.tb00933.x.
  6. Banacu, C. S., Busu, M. and Ignat, R. (2019) "Entrepreneurial Innovation Impact on Recycling Municipal Waste. A Panel Data Analysis at the EU Level", Sustainability, Vol. 11, No. 18, pp. 1-13. ISSN 2071-1050 DOI 10.3390/su11185125.
  7. Banerjee, O., Cicowiez, M., Vargas, R., Obst, C., Cala, J. R., Alvarez-Spinosa, A. C., Melo, S., Riveros, L., Romero, G. and Meneses, D.S. (2021) "Gross domestic product alone provides misleading policy guidance for post-conflict land use trajectories in Colombia", Ecological Economics, Vol. 182. ISSN 0921-8009 DOI 10.1016/j.ecolecon.2020.106929.
  8. Batistella, P., Lazaretti, L. R., Teixeira, F. O., Presotto, E. and de Freitas, C. A. (2019) "Avaliação do processo de convergência da produtividade agrícola: uma análise espacial dos municípios gaúchos", Revista de Economia e Agronegócio, Vol. 17, No. 3, pp. 466-484. ISSN 2526-5539 DOI 10.25070/rea.v17i3.7929.
  9. Bergs, R. (2021) "Spatial dependence in the rank-size distribution of cities–weak but not negligible", Plos One, pp. 2-16. E-ISSN 1932-6203 DOI 10.1371/journal.pone.0246796.
  10. Buuren, V. and Fredriks, M. (2001) "Worm plot: simple diagnostic device for modelling growth reference curves", Statistics in Medicine, Vol. 20, No. 8, pp. 1259-1277. E-ISSN 1097-0258, ISSN 0277-6715 DOI 10.1002/sim.746.
  11. Cardoso, P. V., Seabra, V. S, Bastos, I. B. and Costa, E. C. P. (2020) "A Importância da Análise Espacial para Tomada de Decisão: um Olhar sobre a Pandemia de covid-19", Revista Tamoios, Vol. 16, No. 1, pp. 125-137. E-ISSN 1980-4490 DOI 1012957/tamoios.2020.50440.
  12. Čechura, L., Žáková Kroupová, Z., Kostlivý, V. and Lekešová, M. (2021) "Productivity and Efficiency of Precision Farming: The Case of Czech Cereal Production", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 3, pp. 15-24. ISSN 1804-1930. DOI 10.7160/aol.2021.130302.
  13. Cellmer, R., Cichulska, A. and Belej, M. (2020) "Spatial Analysis of Housisng Prices and Market Activity whith the Geographically Weighted Regression", International Journal of Geo-Information, Vol. 9, No. 6, pp. 1-19. ISSN 2220-9964 DOI 10.3390/ijgi9060380.
  14. Cima, E. G., da Rocha-Junior, W. F., Dalposso, G. H., Uribe-Opazo, M. A. and Becker, W. R. (2021a) "Forecasting Grain Production and Static Capacity of Warehouses Using the Natural Neighbor and Multiquadric Equations", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 3, pp. 3-14. ISSN 1804-1930 DOI 10.7160/aol.2021.130301.
  15. ] Cima, E. G., Rocha-Junior ,W. F., Uribe-Opazo, M. A. and Dalposso, G. H. (2021b) "Modifiable Areal Unit Problem (MAUP): Analysis of Agriculture of the State of Paraná-Brazil", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 2, pp. 35-50. ISSN 1804-1930 DOI 10.7160/aol.2021.130203.
  16. Drapper, N. R. and Smith, H. (1998) "Applied regression analysis", New York: J.Wiley, pp. 407. ISBN 0471029955
  17. Evans, F. H., Salas, A. R., Rakshit, S., Scanlan, C. A. and Cook, S. E. (2020) "Assessment of the Use of Geographically Weighted Regression for Analysis of Large On-Farm Experiments and Implications for Practical Application", Agronomy, Vol. 10, No. 11, pp. 1-25. ISSN 2073-4395 DOI 10.3390/agronomy10111720.
  18. Fan, W. and Hao, Y. (2020) "An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China", Renewable Energy, Vol. 146, pp. 598-609. E-ISSN 1879-0682, ISSN 0960-1481 DOI 10.1016/j.renene.2019.06.170.
  19. Fingleton, B. (2008) "A generalized method of moments estimator for a spatial panel model with an endogenous spatial lag and spatial moving average error sí", Spatial Economic Analysis, Vol. 3, NO. 1, pp. 27-44. ISSN 1742-1772 DOI 10.1080/17421770701774922.
  20. Fotheringham, A. S., Brunsdon, C. and Charlton, M. E. (2002) "Geographically weighted regression: The analysis of spatially varying relationship", New York, NY: Wiley, 288 p. ISBN 978-0-471-49616-8
  21. Fotheringham, A. S., Yang, W. and Kang, W. (2017) "Multiscale geographically weighted regression (MGWR)", Annals of the American Association of Geographers, Vol. 107, No. 6, pp. 1247-1265. E-ISSN 2469-4460. ISSN 2469-4452 DOI 10.1080/24694452.2017.1352480.
  22. Gaffuri, J. K. F. and Alves, L. R. (2022) "Distribuição espacial do índice regional do crédito rural para o Paraná (2008-2018)", Informe GEPEC, Vol. 26, No. 1, pp. 87-105. ISSN 1676-0670 DOI 10.48075/igepec.v26i1.28154.
  23. Grifn, T. and Lowenberg DeBoer, J. (2019) "Modeling local terrain attributes in landscape scale site specifc data using spatially lagged independent variable via cross regression", Agriculture Precision, Vol. 21, pp. 934-954. ISSN 1385-2256 DOI 10.1007/s11119-019-09702-5.
  24. Harris, P. (2019) "A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing Between Autocorrelation and Heterogeneity Effects", Geographical Analysis, Vol. 51, No. 2, pp. 151-181. E-ISSN 1538-463, ISSN 0016-7363 DOI 10.1111/gean.12163.
  25. Hoef, J. M., Peterson, E. E., Hooten, M. B., Ephraim, M. H. and Fortin, M. J. (2018) "Spatial autoregressive models for statistical inference from ecological data", Ecological Monographs, Vol. 88, No. 1, pp. 36-59. ISSN 0012-9615 DOI 10.1002/ecm.1283.
  26. Hu, Q., Ma, Y., Xu, B., Song, Q., Tang, H. and Wu, W. (2018) "Estimating Sub-Pixel Soybean Fraction from Time-Series MODIS Data Using an Optimized Geographically Weighted Regression Model", Remote Sensing, Vol. 10, No. 491, pp. 1-21. ISSN 2072-4292 DOI 110.3390/rs10040491.
  27. Huo, K., Ruan, Y., Fan, H., Guo, Ch. and Cai, H. (2022) "Spatial-temporal variation characteristics of cultivated land and controlling factors in the Yangtze River Delta region of China", Frontiers in Environmental Science, Vol. 10, pp. 1-18. ISSN 2296-665X DOI 10.3389/fenvs.2022.871482.
  28. Instituto Brasileiro de Geografia e Estatística (IBGE) (2021a) "Produto Interno Bruto – PIB". [Online]. Avaiable: [Accessed: Dec. 2, 2021]. (In Portuguese).
  29. Instituto Brasileiro de Geografia e Estatística (IBGE) (2021b) "Produto Interno Bruto dos Municípios". [Online]. Avaiable: [Accessed: Dec. 7, 2021]. (In Portuguese).
  30. Instituto Paranaense de Desenvolvimento Econômico e Social (IPARDES) (2021) "Índice Ipardes de Desempenho Municipal–IPDM". [Online]. Avaiable: conteudo=1&cod_conteudo=19. [Accessed: June 22, 2021]. (In Portuguese).
  31. Jaia, I. G. N. M. and Chadidjah, A. (2021) "Spatial Autoregressive in Ecological Studies: A Comparison of the SAR and CAR Models", Engineering Letters, Vol. 29 No. 1, pp. 1-6. ISSN 1816-0948.
  32. Jank, M. S., Guo, P. and de Miranda, S. H. G. (2020) "China-Brazil partnership on agriculture and food security", ESALQ/USP, pp. 428. ISBN 978-65-87391-00-7 DOI 10.11606/9786587391007.
  33. Kánská, E., Stočes, M., Masner, J., Jarolímek, J., Šimek, P. and Vaněk, J. (2021) "Possibilities of Using Social Networks as Tools for Integration of Czech Rural Areas - Survey 2021", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 3, pp. 59-66. ISSN 1804-1930 DOI 10.7160/aol.2021.130306.
  34. ] Kedron, P., Li, W., Fotheringham, S. and Goodchild, M. (2021) "Reproducibility and replicability: opportunities and challenges for geospatial research", International Journal of Geographical Information Science, Vol. 35, No. 8. pp. 427-445. ISSN 1362-3087 DOI 10.1080/13658816.2020.1802032.
  35. LeSage, J. P. (2015) "The Theory and Practice of Spatial Econometrics", Spatial Economic Analysis, Vol. 10, No. 3 , 400 p. ISSN 1742-1772 DOI 10.1080/17421772.2015.1062285.
  36. Li, Z. and Yan, H. (2020) "Transformation in scale for continuous zooming", In: Guo, H., Goodchild, M. F. and Annoni, A. (eds.) "Manual of digital earth", Springer, Singapore, p. 279-324. E-ISBN 978-981-32-9915-3. DOI 10.1007/978-981-32-9915-3_8.
  37. de Lima, J. F. (2020) "Valor adicionado fiscal no estado do Paraná: concentração e reestruturação regional", Revista do Desenvolvimento Regional, Vol. 17, No. 2, pp. 100-112. E-ISSN 2317-5443. DOI 10.26767/coloquio.v17i2.1664. (In Portuguese).
  38. Macário, C. G. N., Esquerdo, J. C. D. M., Coutinho, A. C., Speranza, A. S., Silva, J. S. V., Gonçalves, J. F., Vendrúsculo, A. L. G. and Cruz, S. A. B. (2020) "Geotecnologias na agricultura digital". [Online]. Avaiable: [Accessed: Aug. 1, 2021]. (In Portuguese)
  39. Marconato, M., Moro, O. F. D., Parre, J. L. and Fravo, J. (2020) "Uma Análise Espacial Sobre a Saúde nos Municípios Brasileiros em 2010", Revista de Economia e Agronegócio, Vol. 18, No. 1, pp. 1-26. ISSN 2526-5539. DOI 10.25070/rea.v18i1.7926.
  40. Matese, A., Di Gennaro, S.F., and Santesteban, L.G. (2019) "Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data. A case of study for precision viticulture", Computers and Electronics in Agriculture, Vol.162, pp. 931-949. ISSN 0168-1699 DOI 10.1016/j.compag.2019.05.038.
  41. Mykhnenko, V. and Wolff, M. (2019) "State rescaling and economic convergence", Regional Studies, Vol. 53, No. 4, pp. 462-477. E-ISSN 1360-0591, ISSN 0034-3404 DOI 10.1080/00343404.2018.1476754.
  42. Pegorare, A. B., Moraes, P. M., Costa, R. B., Abreu, U. G. P., Mendes, D. F. M., Moreira, T. B. S., Cunha, G. H. M. and Constantino, M. (2018) "Spatial econometric analysis of the main agricultural commodities produced in Central-West Region, Brazil", African Journal of Agricultural Research, Vol. 13, No. 4, pp. 167-180. ISSN 1991- 637X DOI 10.5897/AJAR2017.12730.
  43. R Core Team (2021) " R: A language and environment for statistical computing", R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-90005107-0. [Online]. Avaiable: [Accessed: July 20, 2021].
  44. Seibert, R. M., Freire da Silva, R. C. (2021) "Fatores Explicativos das Variações no Pib e Pib Agropecuário Gaúchos", Formação (ONLINE), Vol. 28, No. 53, pp. 975-1000. ISSN 2178-7298 DOI 10.33081/formacao.v28i53.8649.
  45. Shikida, P. F. A., Galante, V. A. and Cattelan, R. (eds.) (2020) "Agronegócio Paranaense: Potencialidades e Desafios II", Editora IDESF, 247 p., Foz do Iguaçu, PR-Brasil. ISBN 978-65-88169-02-5. (In Portuguese).
  46. de Souza Pimenta, F., Ribeiro, V. R. and Cruz Júnior, D. C. (2021) "Modelagem de regressão espacial para estimava de valores em massa a partir de cartografia cadastral", Revista Brasileira de Cartografia, Vol.73. No.1, pp. 36-52. ISSN 0560-4613 DOI 10.14393/rbcv73n1-51484.
  47. Spring (2003) "Statistic 333 Cp, AIC and BIC". [Online]. Available: 333 larget/aic.pdf. 2003. [Accessed: April 27, 2019].
  48. Uribe-Opazo, M. A., Borssoi, J. A. and Galea, M. (2012) "Influence diagnostics in Gaussian spatial linear models", Journal of Applied Statistics, Vol. 39, No. 3, pp. 615-630. E-ISSN 1360-0532, ISSN 0266-4763 DOI 10.1080/02664763.2011.607802.
  49. Vieira Junior, P. A., Contini, E., Henz, G. P. and Nogueira, V. G. de C. (2019) "Geopolítica do Alimento o Brasil como Fonte Estratégica de Alimentos para a Humanidade", Embrapa, Brasília, 1st ed., 317 p. ISBN 978-85-7035-933-9. (In Portuguese)
  50. Zasada, I., Schmutz, U., Wascher, D., Kneafsey, M., Corsi, S., Mazocchi, C., Monaco, F., Boyce, P., Doernberger, A., Sali, G. and Piorr, A. (2020) "Food beyond the city – Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions", City Culture and Society, Vol. 16, pp. 25-35. ISSN 1877-9166 DOI 10.1016/j.ccs.2017.06.002.
  51. Wang, L., Lee, G. and Williams, I. (2019) "The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach", ISPRS International Journal of Geo-Information, Vol. 8, No. 51, pp. 1-18. ISSN 2220-9964 DOI 10.3390/ijgi8010051.
  52. Wei, W., Zhang, X., Liu, CH., Xie, B., Zhou, J. and Zhang, H. (2022) "A new drought index and its application based on geographically weighted regression (GWR) model and multi source remote sensing data", Environmental Science and Pollution Research, pp. 1-23. ISSN 0944-1344 DOI 10.1007/s11356-022-23200-8.
  53. Wheeler, D. and Tiefelsdorf, M. (2005) "Multicollinearity and correlation among local regression coefficients in geographically weighted regression", Journal of Geographical Systems, Vol. 7, No. 2, pp. 161-187. E-ISSN 1435-5949. ISSN 1435-5930Wheeler, D. and Tiefelsdorf, M. (2005) "Multicollinearity and correlation among local regression coefficients in geographically weighted regression", Journal of Geographical Systems, Vol. 7, No. 2, pp. 161-187. E-ISSN 1435-5949. ISSN 1435-5930 DOI 10.1007/s10109-005-0155-6.

Full paper

  Full paper (.pdf, 1.1 MB).