Developing an Efficient System with Mask R-CNN for Agricultural Applications

DOI 10.7160/aol.2023.150105
No 1/2023, January
pp. 61-72

Jabir, B., Moutaouakil, K. E. and Falih, N. (2023) "Developing an Efficient System with Mask R-CNN for Agricultural Applications", AGRIS on-line Papers in Economics and Informatics, Vol. 15, No. 1, pp. 61-72. ISSN 1804-1930. DOI 10.7160/aol.2023.150105.


In order to meet the world's demand for food production, farmers and producers have improved and increased their agricultural production capabilities, leading to a profit acceleration in the field. However, this growth has also caused significant environmental damage due to the widespread use of herbicides. Weeds competing with crops result in lower crop yields and a 30% increase in losses. To rationalize the use of these herbicides, it would be more effective to detect the presence of weeds before application, allowing for the selection of the appropriate herbicide and application only in areas where weeds are present. The focus of this paper is to define a pipeline for detecting weeds in images through the use of a Mask R-CNN-based weed classification and segmentation module. The model was initially trained locally on our machine, but limitations and issues with training time prompted the team to switch to cloud solutions for training.


Deep learning, CNN, Mask R-CNN, precision agriculture, weed detection.


  1. Carneiro Pessoa, T., Gmys, J., de Carvalho Júnior, F. H., Melab, N. and Tuyttens, D. (2018) "GPU‐accelerated backtracking using CUDA Dynamic Parallelism", Concurrency and Computation: Practice and Experience, Vol. 30, No. 9, pp. 16-30. ISSN 1532-0626. DOI 10.1002/cpe.4374.
  2. Fernández‐Quintanilla, C., Peña, J. M., Andújar, D., Dorado, J., Ribeiro, A. and López‐Granados, F. (2018) "Is the current state of the art of weed monitoring suitable for site‐specific weed management in arable crops?", Weed Research, Vol. 58, No. 4, pp. 259-272. ISSN 0043-1737. DOI 10.1111/wre.12307.
  3. Hafiz, A. M. and Bhat, G. M. (2020) "A survey on instance segmentation: state of the art", International Journal of Multimedia Information Retrieval, Vol. 9, No. 3, pp. 171-189. ISSN 2192-6611. DOI 10.1007/s13735-020-00195-x.
  4. Han, G., Huang, S., Ma, J., He, Y. and Chang, S. F. (2022) "Meta faster r-cnn: Towards accurate few-shot object detection with attentive feature alignment", In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, No. 1, pp. 780-789. ISSN 2374-3468. DOI 10.1609/aaai.v36i1.19959.
  5. Hoeser, T. and Kuenzer, C. (2020) "Object detection and image segmentation with deep learning on earth observation data: A review-part i: Evolution and recent trends", Remote Sensing, Vol. 12, No. 10, p. 1667. ISSN 2072-4292. DOI 10.3390/rs12101667.
  6. Huang, Z., Chen, H., Liu, B. and Wang, Z. (2021) "Semantic-guided attention refinement network for salient object detection in optical remote sensing images", Remote Sensing, Vol. 13, No. 11, p. 2163. ISSN 2072-4292. DOI 10.3390/rs13112163.
  7. Jabir, B., Falih, N., Sarih, A. and Tannouche, A. (2021) "A Strategic Analytics Using Convolutional Neural Networks for Weed Identification in Sugar Beet Fields", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 49-57. ISSN 1804-1930. DOI 10.7160/aol.2021.130104.
  8. Jabir, B., Falih, N. and Rahmani, K. (2021) "Accuracy and Efficiency Comparison of Object Detection Open-Source Models", International Journal of Online & Biomedical Engineering, Vol. 17, No. 5. pp. 165-184. ISSN 2626-8493. DOI 10.3991/ijoe.v17i05.21833.
  9. Khachnaoui, H., Mabrouk, R. and Khlifa, N. (2020) "Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson's disease: a review", IET Image Processing, Vol. 14, No. 16, pp. 4013-4026. ISSN 1751-9659. DOI 10.1049/iet-ipr.2020.1048.
  10. Lei, X. and Sui, Z. (2019) "Intelligent fault detection of high voltage line based on the Faster R-CNN". Measurement, Vol. 138, No. 8, pp. 379-385. ISSN 02632241. DOI 10.1016/j.measurement.2019.01.072.
  11. Lin, C., Shi, Y., Zhang, J., Xie, C., Chen, W. and Chen, Y. (2021) "An anchor-free detector and R-CNN integrated neural network architecture for environmental perception of urban roads", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 235, No. 12, pp. 2964-2973. ISSN 0954-4070. DOI 10.1177/09544070211004466.
  12. Liu, W., Shan, S., Chen, H., Wang, R., Sun, J. and Zhou, Z. (2022) "X-ray weld defect detection based on AF-RCNN", Welding in the World, Vol. 66, No. 6, pp. 1165-1177. ISSN 0043-2288. DOI 10.1007/s40194-022-01281-w.
  13. Nguyen, T. T., Wahib, M. and Takano, R. (2021) "Efficient MPI‐AllReduce for large‐scale deep learning on GPU‐clusters", Concurrency and Computation: Practice and Experience, Vol. 33, No. 12, p. e5574. ISSN 1532-0626 DOI 10.1002/cpe.5574.
  14. Padilha, T. P. P. and de Lucena, L. E. A. (2020) "A systematic review about use of tensorflow for image classification and word embedding in the brazilian context", Academic Journal on Computing, Engineering and Applied Mathematics, Vol. 1, No. 2, pp. 24-27. ISSN 2675-3588. DOI 10.20873/uft.2675-3588.2020.v1n2.p24-27.
  15. Pang, B., Nijkamp, E. and Wu, Y. N. (2020) "Deep Learning with TensorFlow: A Review", Journal of Educational and Behavioral Statistics, Vol. 45, No 2, pp. 227-248. ISSN 1076-9986. DOI 10.3102/1076998619872761.
  16. Rajeshwari, P., Abhishek, P., Srikanth, P. and Vinod, T. (2019) "Object detection: an overview", International Journal of Trend in Scientific Research and Development (IJTSRD), Vol. 3, No. 1, pp. 1663-1665. ISSN 2456-6470. DOI 10.31142/ijtsrd23422.
  17. Sewak, M., Sahay, S. K. and Rathore, H. (2020) "An overview of deep learning architecture of deep neural networks and autoencoders", Journal of Computational and Theoretical Nanoscience, Vol. 17, No. 1, pp. 182-188. ISSN 1546-1955. DOI 10.1166/jctn.2020.8648.
  18. hin, H.-Ch. Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D. and Summers, R. M. (2016) "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning", IEEE Transactions on Medical Imaging, Vol. 35, No. 5., pp. 1285-1298. ISSN 0278-0062. DOI 10.1109/TMI.2016.2528162.
  19. Shorten, C. and Khoshgoftaar, T. M. (2019) "A survey on image data augmentation for deep learning", Journal of Big Data, Vol. 6, No. 1, pp. 1-48. ISSN 2196-1115. DOI 10.1186/s40537-019-0197-0.
  20. Timpanaro, G., Urso, A., Foti, V. T. and Scuderi, A. (2021) "Economic Consequences of Invasive Species in Ornamental Sector in Mediterranean Basin: An Application to Citrus Canker", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 131-149. ISSN 1804-1930 DOI 10.7160/aol.2021.130110.
  21. Tiwari, A. and Jaga, P. K. (2012) "Precision farming in India - A review", Outlook on Agriculture, Vol. 41, No. 2, pp. 139-143. ISSN 0030-7270. DOI 10.5367/oa.2012.0082.
  22. Wäldchen, J. and Mäder, P. (2018) "Machine learning for image based species identification", Methods in Ecology and Evolution, Vol. 9, No. 11, pp. 2216-2225. ISSN 2041-210X DOI 10.1111/2041-210X.13075.
  23. Yang, Y., Hao, X., Zhang, L. and Ren, L. (2020) "Application of Scikit and Keras Libraries for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy (LIBS)", Sensors, Vol. 20, No. 5, p. 1393. ISSN 1424-8220. DOI 10.3390/s20051393.
  24. Zhu, D., Lu, S., Wang, M., Lin, J. and Wang, Z. (2020) "Efficient precision-adjustable architecture for softmax function in deep learning", IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No 12, pp. 3382-3386. ISSN 1549-7747. DOI 10.1109/TCSII.2020.3002564.

Full paper

  Full paper (.pdf, 1.16 MB).