Smart Agricultural Decision Support Systems for Predicting Soil Nutrition Value Using IoT and Ridge Regression

DOI 10.7160/aol.2022.140108
No 1/2022, March
pp. 95-106

Sudha, M. K., Manorama, M. and Aditi, T. (2022) "Smart Agricultural Decision Support Systems for Predicting Soil Nutrition Value Using IoT and Ridge Regression ", AGRIS on-line Papers in Economics and Informatics, Vol. 14, No. 1, pp. 95-106. ISSN 1804-1930. DOI 10.7160/aol.2022.140108.

Abstract

Cost effective agricultural crop productivity is an everlasting demand, this predominant expedition has raised a global shift towards practicing smart agricultural methods to increase the productivity and the efficiency of the agricultural sector, using IoT. This research identified the benefits and the challenges in IoT adoption as an alternate for out-of-date agricultural practices. The proposed decision support system using IoT for Smart Soil Nutrition Prediction (SSNP) adopts IR sensors and implements diffuse reflectance infrared spectroscopy. Information is transferred using Arduino and Zigbee protocol. It has indicated precise outcomes in various studies giving a high repeatable, low cost and fast estimation of soil properties. The measure of light absorbed by a soil example is estimated, inside several particular wavebands over a scope of frequencies to yield an infrared range utilizing an IR sensor. Using the given values, the experimental analysis using the dataset and the nutrition values of the soil such as Ca, P, SOC, Sand and pH are predicted. This proposed IoT framework would enhance the farmer’s knowledge regarding the type of crops they should grow to get maximum profit from their agricultural produce.

Keywords

Agriculture, Internet of Things (IoT), IoT in agriculture, IoT sensors, IR Sensor, Regression, Smart agriculture.

References

  1. Badhe, A., Kharadkar, S., Ware, R., Kamble, P. and Chavan, S. (2018) "IOT based smart agriculture and soil nutrient detection system", International Journal on Future Revolution in Computer Science and Communication Engineering, Vol. 4 , No. 4, pp. 774-777. ISSN 2454-4248.
  2. Balan, B. and Tech, M. (2017) "Sensor based smart agriculture using IOT", International Journal of MC Square Scientific Research, Vol. 9, No. 2. ISSN 0975-0932.
  3. Drucker, H., Burges, Ch. J. C., Kaufman, L., Smola, A. and Vapnik, V. (1997) "Support Vector Regression Machines", Advances in Neural Information Processing Systems, NIPS 1996, pp. 155-161. ISSN 10495258.
  4. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y. and Hindia, M. N. (2018) "An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges", IEEE Internet of Things Journal, Vol. 5, No. 5, pp. 3758-3773. ISSN 2327-4662. DOI 10.1109/JIOT.2018.2844296.
  5. Gayatri, M. K., Jayasakthi, J. and Mala, G. A. (2015) "Providing Smart Agricultural solutions to farmers for better yielding using IoT" , IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), pp. 40-43. DOI 10.1109/TIAR.2015.7358528.
  6. Gruber, M. (1998) "Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators", Boca Raton: CRC Press, 648 p. ISBN 0-8247-0156-9.
  7. Channe, H., Kothari, S. and Kadam, D. (2015) "Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing and big-data analysis", International Journal for Computer Technology and Applications, Vol. 6, No. 3, pp. 374-382. ISSN 2229-6093.
  8. Jaiganesh, S., Gunaseelan, K. and Ellappan, V. (2017) "IOT agriculture to improve food and Farming Technology", In: 2017 Conference on Emerging Devices and Smart Systems (ICEDSS) IEEE, pp. 260-266. ISBN 9781509055562. DOI 10.1109/ICEDSS.2017.8073690.
  9. Jain, A. and Kumar, A. (2020) "Smart Agriculture Monitoring System Using IOT", International Journal for Research in Applied Science and Engineering Technology, Vol. 8, No. 7, pp. 366-372. ISSN 2321-9653. DOI 10.22214/ijraset.2020.7060.
  10. Jat, D. S., Limbo, A. S. and Singh, C. (2019) "Internet of things for automation in smart agriculture: a technical review", In: Smart Farming Technologies for Sustainable Agricultural Development, pp. 93-105, IGI Global. ISSN 2326-9162. DOI 10.4018/978-1-5225-5909-2.ch005.
  11. Kennedy, P. (2003) "A Guide to Econometrics", The MIT Press. pp. 205-206. ISBN 0-262-61183-X.
  12. Lakhwani, K., Gianey, H., Agarwal, N. and Gupta, S. (2019) "Development of IoT for smart agriculture a review", In: Emerging Trends in Expert Applications and Security, pp. 425-432. Springer, ISBN-13. 978-9811322846.
  13. Mat, I., Kassim, M. R. M., Harun, A. N. and Yusoff, I. M. (2018) "Smart agriculture using Internet of Things", In: 2018 IEEE Conference on Open Systems (ICOS), pp. 54-59. ISBN 978-1-5386-6666-1.
  14. Nandyala, Ch. S. and Kim, H.-K. (2016) "Green IoT agriculture and healthcare application (GAHA)", International Journal of Smart Home, Vol. 10, No. 4, pp. 289-300. ISSN 1975-4094. DOI 10.14257/ijsh.2016.10.4.26.
  15. Patil, K. A. and Kale, N. R. (2016) "A model for smart agriculture using IoT", International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), pp. 543-545. ISBN 978-1-5090-0468-3. DOI 10.1109/ICGTSPICC.2016.7955360.
  16. Prathibha, S. R., Hongal, A. and Jyothi, M. P. (2017) "IoT based monitoring system in smart agriculture", International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), pp. 81-84. ISBN 9781509067022. DOI 10.1109/ICRAECT.2017.52.
  17. Rao, R. N. and Sridhar, B. (2018) "IoT based smart crop-field monitoring and automation irrigation system", IEEE, 2018 International Conference on Inventive Systems and Control (ICISC), pp. 478-483. ISBN 1538608073. DOI 10.1109/ICISC.2018.8399118.
  18. Salam, A., and Shah, S. (2019) "Internet of things in smart agriculture: Enabling Technologies", IEEE Fifth World Forum on Internet of Things (WF-IoT), pp. 692-695. ISBN 9781538649800.
  19. Surai, S., Kundu, R., Ghosh, R. and Bid, G. (2018) "An IOT based smart agriculture system with soil moisture sensor", Journal of Innovative Research, Vol. 1, No. 1, pp. 39-42. ISSN 2349-6002.
  20. Suma, N., Samson, S. R., Saranya, S., Shanmugapriya, G. and Subhashri, R. (2017) "IOT based smart agriculture monitoring system", International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 5, No. 2, pp. 177-181. ISSN 2321-8169. DOI 10.17762/ijritcc.v5i2.193.
  21. Sudha, M. (2017) "Intelligent decision support system based on rough set and fuzzy logic approach for efficacious precipitation forecast", Decision Science Letters, Vol. 6, pp. 96-105. ISSN 19295804. DOI 10.5267/j.dsl.2016.6.002.
  22. Sudha, M. and Subbu, K. (2017) "Statistical Feature Ranking and Fuzzy Supervised Learning Approach in Modeling Regional Rainfall Prediction Systems", AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 2, pp. 117-126. ISSN 1804-1930. DOI 10.7160/aol.2017.090210.
  23. Sudha, M. and Valarmathi, B. (2014) "Rainfall forecast analysis using rough set attribute reduction and methods", AGRIS on-line Papers in Economics and Informatics, Vol. 6, No. 4, pp. 145-154. ISSN 18041930.
  24. Sudha, M. and Valarmathi, B. (2015) "Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction", AGRIS on-line Papers in Economics and Informatics, Vol. 7, No. 4, pp. 151 - 160. ISSN 1804-1930.
  25. Sudha, M. and Valarmathi, B. (2016) "Identification of effective features and classifiers for short term rainfall prediction using rough set based maximum frequency weighted feature reduction technique", Journal of Computing and Information Technology, Vol. 24, No. 2, pp. 181-194. ISSN 1330-1136.
  26. Suykens, J. A. and Vandewalle, J. (1999) "Least Squares Support Vector Machine Classifiers", Neural Processing Letters, Vol. 9, No. 3, pp. 293-300. ISSN 1573-773X.
  27. Turgut, D. and Boloni, L. (2017) "Value of information and cost of privacy in the internet of things", IEEE Communications Magazine, Vol. 5, No. 9, pp. 62-66. ISSN 1636804. DOI 10.1109/MCOM.2017.1600625.
  28. Vineela, T., Naga Harini, J., Kiranmai, C., Harshitha, G. and Adi Lakshmi, B. (2018) "IoT based agriculture monitoring and smart irrigation system using raspberry Pi", International Research Journal of Engineering and Technology, Vol. 5, pp.1417-1420. ISSN 2395-0056.
  29. Ye, J., Chen, B., Liu, Q. and Fang, Y. (2013) "A precision agriculture management system based on Internet of Things and WebGIS", IEEE 21st International Conference on Geoinformatics , pp. 1-5. ISBN 9781467362283. DOI 10.1109/Geoinformatics.2013.6626173.
  30. Zhao, J., Zhang, J., Feng, Y. and Li, J. (2010) "The study and application of the IOT technology in agriculture", 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, Vol. 2, pp. 462-465. ISBN 9781424455409. DOI 10.1109/ICCSIT.2010.5565120.

Full paper

  Full paper (.pdf, 1.38 MB).