Testing the Agricultural Induced EKC Hypothesis: Fresh Empirical Evidence from the Top Ten Agricultural Countries

DOI 10.7160/aol.2022.140102
No 1/2022, March
pp. 19-31

Atasel, O. Y., Guneysu, Y. and Pata, U. K. (2022) "Testing the Agricultural Induced EKC Hypothesis: Fresh Empirical Evidence from the Top Ten Agricultural Countries", AGRIS on-line Papers in Economics and Informatics, Vol. 14, No. 1, pp. 19-31. ISSN 1804-1930. DOI 10.7160/aol.2022.140102.

Abstract

Within the scope of sustainable development goals and climate change mitigation, this study focuses on investigating the effects of energy consumption, agriculture, and economic growth on CO2 emissions in the top ten agricultural countries for the period 1997-2016. By investigating the validity of the agricultural induced environmental Kuznets curve (EKC), the study mainly aims to explore how agricultural activities affect environmental quality. In doing so, this study utilizes the augmented mean group (AMG) estimator that allows for heterogeneity and cross-sectional dependence. The results of the AMG estimator suggest that the agricultural induced EKC hypothesis is valid for six out of the ten countries. The empirical results also indicate that agriculture reduces CO2 emissions, while energy consumption accelerates environmental degradation. All these results suggest that agricultural production and economic development can play an essential role in reducing environmental pollution.

Keywords

Agriculture, EKC, energy consumption, heterogeneity, panel data.

References

  1. Abdallah, K. B., Belloumi, M. and De Wolf, D. (2013) "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector", Renewable and Sustainable Energy Reviews, Vol. 25, pp. 34-43. ISSN 1364-0321. DOI 10.1016/j.rser.2013.03.066.
  2. Agboola, M. O. and Bekun, F. V. (2019) "Does agricultural value added induce environmental degradation? Empirical evidence from an agrarian country", Environmental Science and Pollution Research, Vol. 26, No. 27, pp. 27660-27676. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-019-05943-z.
  3. Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah Ilyas, A. and Din, I. U. (2017) "Climate change and its impact on the yield of major food crops: evidence from Pakistan", Foods, Vol. 6, No. 6, pp. 1-19. E-ISSN 2304-8158. DOI 10.3390/foods6060039.
  4. Aydoğan, B. and Vardar, G. (2020) "Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries", International Journal of Sustainable Energy, Vol. 39, No. 4, pp. 335-348. E-ISSN 1478-646X, ISSN 1478-6451. DOI 10.1080/14786451.2019.1686380.
  5. Aziz, N., Sharif, A., Raza, A. and Rong, K. (2020) "Revisiting the role of forestry, agriculture, and renewable energy in testing environment Kuznets curve in Pakistan: evidence from Quantile ARDL approach", Environmental Science and Pollution Research, Vol. 27, pp. 10115-10128. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-020-07798-1.
  6. Balsalobre-Lorente, D., Driha, O. M, Bekun, F. V. and Osundina, A. O. (2019) "Do agricultural activities induce carbon emissions? The BRICS experience", Environmental Science and Pollution Research, Vol. 26, No. 24, pp. 25218-25234. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-019-05737-3.
  7. Breusch, T. S. and Pagan, A. R. (1980) "The Lagrange multiplier test and its applications to model specification in econometrics", The Review of Economic Studies, Vol. 47, No. 1, pp. 239-253. E-ISSN 1467-937X, ISSN 0034-6527. DOI 10.2307/2297111.
  8. Breitung, J. (2005) "A parametric approach to the estimation of cointegration vectors in panel data", Econometric Reviews, Vol. 24, No. 2, pp. 151-173. E-ISSN 1532-4168, ISSN 0747-4938. DOI 10.1081/ETC-200067895.
  9. Chel, A. and Kaushik, G. (2011) "Renewable energy for sustainable agriculture", Agronomy for Sustainable Development, Vol. 31, No. 1, pp. 91-118. E-ISSN 1773-0155, ISSN 1774-0746. DOI 10.1051/agro/2010029.
  10. Cherni, A. and Jouini, S. E. (2017) "An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence", International Journal of Hydrogen Energy, Vol. 42, No. 48, pp. 29056-29066. ISSN 0360-3199. DOI 10.1016/j.ijhydene.2017.08.072.
  11. Destek, M. A. and Sarkodie, S. A. (2019) "Investigation of environmental Kuznets curve for ecological footprint: the role of energy and financial development", Science of the Total Environment, Vol. 650, pp. 2483-2489. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2018.10.017.
  12. Destek, M. A. (2017) "Biomass energy consumption and economic growth: evidence from top 10 biomass consumer countries", Energy Sources, Part B: Economics, Planning, and Policy, Vol. 12, No. 10, pp. 853-858. E-ISSN 1556-7257, ISSN 1556-7249. DOI 10.1080/15567249.2017.1314393.
  13. Dogan, N. (2019) "The impact of agriculture on CO2 emissions in China", Panoeconomicus, Vol. 66, No. 2, pp. 257-271. E-ISSN 2217-2386, ISSN 1452-595X. DOI 10.2298/PAN160504030D.
  14. Eberhardt, M. and Bond, S. (2009) "Cross-section dependence in nonstationary panel models: a novel estimator". MPRA Paper 17692, pp. 1-26.
  15. Eberhardt, M. and Teal, F. (2010) "Productivity analysis in global manufacturing production. Economics Series", Working Papers, 515. University of Oxford, Department of Economics.
  16. FAO (2016) "The State of Food and Agriculture Climate Change, Agriculture and Food Security" Rome. [Online]. Available: http://www.fao.org/3/a-i6030e.pdf [Accessed: 2 Sept. 2020].
  17. Global Carbon Project (2020) "Supplemental data of Global Carbon Budget 2020 (Version 1.0)". [Online]. Available: https://folk.universitetetioslo.no/roberan/GCB2020.shtml [Accessed: 24 March 2021].
  18. Gokmenoglu, K. K. and Taspinar N. (2018) "Testing the agriculture-induced EKC hypothesis: the case of Pakistan", Environmental Science and Pollution Research, Vol. 25, No. 23, pp. 22829-22841. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-018-2330-6.
  19. Gokmenoglu, K. K., Taspinar, N. and Kaakeh, M. (2019) "Agriculture-induced environmental Kuznets curve: the case of China", Environmental Science and Pollution Research, Vol. 26, No. 36, pp. 37137–37151. E-ISSN: 1614-7499, ISSN: 0944-1344. DOI 10.1007/s11356-019-06685-8.
  20. Grossman, G. M. and Krueger, A. B. (1991) "Environmental impacts of a North American free trade agreement", NBER working papers, 3914. National Bureau of Economic Research. DOI 10.3386/w3914.
  21. Holtz-Eakin, D. and Selden, T. M. (1995) "Stoking the fires? CO2 emissions and economic growth", Journal of Public Economics, Vol. 57, No. 1, pp. 85-101. ISSN 0047-2727. DOI 10.1016/0047-2727(94)01449-X.
  22. IPCC (2013) "Climate Change 2013 The Physical Science Basis", [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf [Accessed: 10 Sept. 2020].
  23. IPCC (2014) "Working Group Ⅲ Contribution to the IPCC Fifth Assessment Report of the Intergovernmental Panel on Climate Change", [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf [Accessed: 27 Oct. 2020].
  24. Jebli, M. B. and Youssef, S. B. (2017) "Renewable energy consumption and agriculture: evidence for cointegration and Granger causality for Tunisian economy", International Journal of Sustainable Development & World Ecology, Vol. 24, No. 2, pp. 149-158. ISSN 1350-4509, E-ISSN 1745-2627. DOI 10.1080/13504509.2016.1196467.
  25. Lotfalipour, M. R., Falahi, M. A. and Ashena, M. (2010) "Economic growth, CO2 emissions, and fossil fuels consumption in Iran", Energy, Vol. 35, No. 12, pp. 5115-5120. ISSN 0360-5442. DOI 10.1016/j.energy.2010.08.004.
  26. Liu, X., Zhang, S. and Bae, J. (2017) "The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries", Journal of Cleaner Production, Vol. 164, pp. 1239-1247. ISSN 0959-6526. DOI 10.1016/j.jclepro.2017.07.086.
  27. Mahmood, N., Wang, Z. and Hassan, S. T. (2019) "Renewable energy, economic growth, human capital, and CO2 emission: an empirical analysis", Environmental Science and Pollution Research, Vol. 26, No. 20, pp. 20619-20630. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-019-05387-5.
  28. Muller, A., Jawtusch, J. and Gattinger, A. (2011) "Mitigating greenhouse gases in agriculture: a challenge and opportunity for agricultural policies", Diakonisches Werk der EKD e.v. for Brot für die Welt Stafflenbergstrabe 76 D-70184 Stuttgart Germany. [Online]. Available: http://orgprints.org/19989/1/gatti.pdf [Accessed: 10 Sept. 2020].
  29. Our World in Data (2019) "Primary energy consumption". [Online]. Available: https://ourworldindata.org/grapher/primary-energy-cons?tab=chart [Accessed: 25 March 2021].
  30. Our World in Data (2020) "Energy use per person". [Online]. Available: https://ourworldindata.org/grapher/per-capita-energy-use. [Accessed: 24 March 2021].
  31. Paramati, S. R., Mo, D. and Gupta, R. (2017) "The effects of stock market growth and renewable energy use on CO2 emissions: evidence from G20 countries", Energy Economics, Vol. 66, pp. 360–371. ISSN 0140-9883. DOI 10.1016/j.eneco.2017.06.025.
  32. Pata, U. K. (2018a) "The effect of urbanization and industrialization on carbon emissions in Turkey: evidence from ARDL bounds testing procedure", Environmental Science and Pollution Research, Vol. 25, No. 8, pp. 7740-7747. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-017-1088-6.
  33. Pata, U. K. (2018b) "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: revisiting the environmental Kuznets curve hypothesis for Turkey", Energy, Vol. 160, pp. 1115-1123. ISSN 0360-5442. DOI 10.1016/j.energy.2018.07.095.
  34. Pata, U. K. (2021) "Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with a structural break", Environmental Science and Pollution Research, Vol. 28, pp. 846-861. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-020-10446-3.
  35. Pesaran, M. H. (2015) "Testing weak cross-sectional dependence in large panels", Econometric Reviews, Vol. 34, No. 6, pp. 1089-1117. E-ISSN 1532-4168, ISSN 0747-4938. DOI 10.1080/07474938.2014.956623.
  36. Pesaran, M. H. and Yamagata, T. (2008) "Testing slope homogeneity in large panels", Journal of Econometrics, Vol. 142, No. 1, pp. 50-93. ISSN 0304-4076. DOI 10.1016/j.jeconom.2007.05.010.
  37. Prastiyo, S. E. and Hardyastuti, S. (2020) "How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia", Environmental Science and Pollution Research, Vol. 27, pp. 42092-42103. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-020-10148-w.
  38. Qiao, H., Zheng, F., Jiang, H. and Dong, K. (2019) "The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries", Science of the Total Environment, Vol. 671, pp. 722-731. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2019.03.336.
  39. Rafiq, S., Salim, R. and Apergis, N. (2016) "Agriculture, trade openness and emissions: an empirical analysis and policy options", Australian Journal of Agricultural and Resource Economics, Vol. 60, No. 3, pp. 348-365. E-ISSN 1467-8489. DOI 10.1111/1467-8489.12131.
  40. Ridzuan, N. H. A. M., Marwan, N. F., Khalid, N., Ali, M. H. and Tseng, M. L. (2020) "Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve", Resources, Conservation and Recycling, Vol. 160, ISSN 0921-3449. DOI 10.1016/j.resconrec.2020.104879.
  41. Sarkodie, S. and Owusu, P. A. (2017) "The causal nexus between carbon dioxide emissions and agricultural ecosystem - an econometric approach", Environmental Science and Pollution Research, Vol. 24, No. 2, pp. 1608-1618. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-016-7908-2.
  42. Selden, T. M. and Song, D. (1994) "Environmental quality and development: is there a Kuznets curve for air pollution emissions?", Journal of Environmental Economics and Management, Vol. 27, No. 2, pp. 147-162. ISSN 0095-0696. DOI 10.1006/jeem.1994.1031.
  43. Shafik, N. and Bandyopadhyay, S. (1992) "Economic growth and environmental quality: time-series and cross-country evidence" , Vol. 904. Policy Research Working Paper, World Bank Publications.
  44. Shafik, N. (1994) "Economic development and environmental quality: an econometric analysis", Oxford Economic Papers, Vol. 45, No. 1, pp. 757-773. E- ISSN 1464-3812, ISSN 0030-7653. DOI 10.1093/oep/46.Supplement_1.757.
  45. Timmer, P. C. (2009) "Agricultural trade policy during structural transformation". In: Sarris, A. and Morrison, J. (eds) "The evolving structure of world agricultural trade Implications for trade policy and trade agreements". FAO, Rome. [Online]. Available: http://www.indiaenvironmentportal.org.in/files/FINAL_PDF_EVOLVING_WITH_COVER_LOW_RES.pdf#page=55 [Accessed: 12 Sept. 2020].
  46. Ullah, A., Khan, D., Khan, I. and Zheng, S. (2018) "Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace", Environmental Science and Pollution Research, Vol. 25, No. 14, pp. 13938-13955. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-018-1530-4.
  47. World Bank (2020) "World development indicators". [Online]. Available: https://databank.worldbank.org/source/world-development-indicators [Accessed: 2 Sept. 2020].
  48. Yilanci, V. and Pata, U. K. (2020) "Investigating the EKC hypothesis for China: the role of economic complexity on ecological footprint", Environmental Science and Pollution Research, Vol. 27, pp. 32683-32694. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-020-09434-4.
  49. Zhang, L., Pang, J., Chen, X. and Lu, Z. (2019) "Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China's main grain-producing areas", Science of the Total Environment, Vol. 665, pp. 1017-1025. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2019.02.162.

Full paper

  Full paper (.pdf, 514.26 KB).