Barriers to and Benefits of the Use of Smart Farming Technologies for Small and Medium Winemakers, Specifically Sensors and Weather Stations: A Pilot Study

DOI 10.7160/aol.2021.130106
No 1/2021, March
pp. 71-85

Kaňovská, L. (2021) “Barriers to and Benefits of the Use of Smart Farming Technologies for Small and Medium Winemakers, Specifically Sensors and Weather Stations: A Pilot Study", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 71-85. ISSN 1804-1930. DOI 10.7160/aol.2021.130106.

Abstract

Digitization is becoming part of agriculture. Winemakers can use monitoring technologies to map land or control the quality of grapes, and telematics, e.g., in tractors, or use entire autonomous machines. The aim of this paper is to find out the barriers to and benefits of the use of smart farming technologies by small and medium winemakers, specifically sensors and weather stations, which allow the collection of site-specific data for subsequent application in viticulture. Therefore, the pilot study analyses how winemakers in traditional industry are able to employ smart farming technologies (SFT) to gain some benefits and also describe possible barriers. The primary method of data collection was through 27 semi-structured interviews with relevant wine industry actors, accessing documents created by SFT providers and an academic literature review. Three groups of actors were researched: 1) 22 winemakers including the Ekovin Association, 2) three SFT providers and, 3) one supplier of hardware for soil and temperature sensors. According to the information of winemakers, it is clear that SFT are used by some of them and they are clearly aware of their benefits, which is also confirmed by SFT providers. The findings revealed that the main STF benefits are adjustment of the product portfolio, savings, consulting and organization of activities. However, respondents also mentioned barriers to SFT implementation, such as low need for information, another source of information, conservative approaches, ignorance of SFT, financial demands, low state support and age of winemakers. The novelty of this paper is in providing an analysis of the issue of SFT, specifically sensors and weather stations, for winemakers from three different perspectives, that of winemakers, suppliers of SFT and HW manufacturer for SFT.

Keywords

Smart farming technologies, precision agriculture, precision viticulture, winemakers, Czech Republic.

References

  1. Advanced Technologies for Industry (2017) "Smart vineyard: management and decision-making support for wine producers. Digital Transformation Monitor". [Online]. Available: https://ati.ec.europa.eu/sites/default/files/2020-06/Smart%20vineyard-%20management%20and%20decision- making%20support%20for%20wine%20producers%20%28v1%29.pdf [Accessed: 20 Oct. 2020].
  2. Agdata (2020) “Vše pro chytré zemědělství v jednom systému“. [Online]. Available: https://www.agdata.cz/ [Accessed: 10 Oct. 2020]. (In Czech).
  3. Bernetti, I., Casini, L. and Marinelli, N. (2006) “Wine and globalisation: changes in the international market structure and the position of Italy”, British Food Journal, Vol. 108, No. 4, pp. 306-315. ISSN 0007-070X. DOI 10.1108/00070700610657146.
  4. Chytrá vinice (2020) “Jsme chytrá vinice“. [Online]. Available: https://sites.google.com/radekosicka.cz/jsme-chytra-vinice/home?authuser=0 [Accessed: 20 Aug. 2020]. (In Czech).
  5. CleverFarm.cz (2020) “Jsme průvodci chytrým a precizním zemědělství“. [Online]. Available: https://www.cleverfarm.cz/o-nas [Accessed: 25 Aug. 2020]. (In Czech).
  6. Coleman, J. (1958) “Relational analysis: The study of social organizations with survey methods”, Human organization, Vol. 17, No. 4, pp. 28-36. E-ISSN 1938-3525, ISSN 0018-7259. DOI 10.17730/humo.17.4.q5604m676260q8n7.
  7. Crookston, R. K. (2006) “A top 10 list of developments and issue impacting crop man-agement and ecology during the past 50 years”, Crop Science, Vol. 46, No. 5, pp. 2253-2262. ISSN 1435-0653. DOI 10.2135/cropsci2005.11.0416gas.
  8. Cullen, R., Forbes, S. L. and Grout, R. (2013) “Non-Adoption of Environmental Innovations in Wine Growing”, New Zealand Journal Crop Horticultural Science, Vol. 41, pp. 41-48. ISSN 01140671. DOI 10.1080/01140671.2012.744760.
  9. Dorofeeva, A. A., Kazak, A. N. and Nyurenberger, L. B. (2019) “Wine tourism and the introduction of new technologies in winemaking and viticulture”, In IOP Conference Series: Earth and Environmental Science, Vol. 315, No. 7, IOP Publishing. DOI 10.1088/1755-1315/315/7/072040.
  10. Dressler, M. and Paunovic, I. (2020) “Converging and diverging business model innovation in regional intersectoral cooperation–exploring wine industry 4.0.", European Journal of Innovation Management, Vol. ahead-of-print No. ahead-of-print. ISSN 1460-1060. DOI 10.1108/EJIM-04-2020-0142.
  11. DYNACROP (2020) “Lightweight API with advanced satellite products for agriculture” [Online]. Available: https://dynacrop.space/en/about-dynacrop/ [Accessed: 18 Aug. 2020].
  12. EKOVÍN (2020) “Co je to ekologická produkce“ [Online]. Available: http://www.ekovin.cz/ekovin/sekce-ekologicke-produkce/co-je-to-ekologicka-produkce [Accessed: 20.10.2020]. ELKO EP (2020) “Chytré zemědělství. IoT ve službách zemědělství“ [Online]. Available: https://www.elkoep.cz/media/files/download/item/files-332/l1_Chytre_zemedelstvi_CZ_2019_print.pdf [Accessed: 10 Sept. 2020] (In Czech).
  13. Escola , A, Camp, F, Solanelles, F, Calveras, J. L., de Martí S. P., Rosel, J. R., Gràcia, F. and Gil, E. (2007) “Variable dose rate sprayer prototype for tree crops based on sensor measured canopy characteristics“, Proceedings of VI ECPA-European Conference on Precision Agriculture, June 3-6, Skiathos, Greece, pp. 563-571. ISBN 978908686024.
  14. Gandhi, P., Somesh. K. and Sree R. (2016) "Which industries are the most digital (and why)". [Online]. Available: https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why [Accessed: 10 Aug. 2020].
  15. Giuliani, E., Morrison, A. and Rabellotti, R. (2011) "Innovation and technological catch-up: The changing geography of wine production”, Edward Elgar Publishing, 232 p. ISBN 978 1 84844 994 7. DOI 10.1108/EJIM-04-2020-0142.
  16. Hallová, M., Polakovič, P. and Slováková, I. (2017) "Current Trends in Training of Managers in the Field of Information and Communication Technologies and Identifying the Barriers to Education of Managers", AGRIS On-line Papers in Economics and Informatics, Vol. 9, No. 4, pp. 45-52. ISSN 1804-1930. DOI 10.7160/aol.2017.090405.
  17. iNels (2020) "Smart pole, farma, louka i drůbežárna“. [Online]. Available: https://www.inels.cz/smart-pole-farma-louka-i-drubezarna [Accessed: 20 Aug. 2020]. (In Czech).
  18. Kemper, E. A., Stringfield, S. and Teddlie, C. (2003) "Mixed methods sampling strategies in social science research", In Handbook of mixed methods in social and behavioral research, Thousand Oaks, CA: Sage. pp. 273-296.
  19. Kernecker, M., Knierim, A., Wurbs, A., Kraus, T. and Borges, F. (2020) "Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe", Precision Agriculture, Vol. 21, No. 1, pp. 34-50. ISSN 1385-2256. DOI 10.1007/s11119-019-09651-z.
  20. Knuth, U. and Knierim, A. (2016) "Interaction with and governance of increasingly pluralistic AKIS: a changing role for advisory services", Knowledge and Innovation Systems toward the Future, 104 p. [Online]. Available: https://scar-europe.org/images/AKIS/Documents/AKIS_foresight_paper.pdf#page=106 [Accessed: 19.9.2020].
  21. López-Leyva, J. A., Talamantes-Álvarez, A., Sanabia-Vincent, E., Aguilera-Silva, L., Gastelum-Rodríguez, G. and Meza-Arballo, O. (2019) "Soil and environmental monitoring on a vineyard in the Guadalupe valley as a tool for processes of precision viticulture based on ZigBee technology to improve the e-agriculture”, In International Conference on Smart Technologies, Systems and Applications, pp. 29-39. Springer, Cham. ISBN 978-3-030-46784-5. DOI 10.1007/978-3-030-46785-2_3.
  22. Maffioli, A., Ubfal, D., Vazquez-Bare, G. and Cerdan-Infantes, P. (2013) "Improving technology adoption in agriculture through extension services: evidence from Uruguay," Journal of Development Effectiveness, Vol. 5, No. 1, pp. 64-81. ISSN 1943-9342. DOI 10.1080/19439342.2013.764917.
  23. Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R. and Gioli, B. (2015) "Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture”, Remote Sensing, Vol. 7, No. 3, pp. 2971-2990. ISSN 2072-4292. DOI 10.3390/rs70302971.
  24. Matese, A. and Di Gennaro, S. F. (2015) "Technology in precision viticulture: A state of the art review", International Journal of Wine Research, Vol. 7, pp. 69-81. ISSN 1179-1403. DOI 10.2147/IJWR.S69405.
  25. Mariani, A., Pomarici, E. and Boatto, V. (2012) “The international wine trade: recent trends and critical issues”, Wine Economics and Policy, Vol. 1, No. 1, pp. 24-40. ISSN 2212-9774. DOI 10.1016/j.wep.2012.10.001.
  26. Martini, B. G., Helfer, G. A., Barbosa, J. L., Modolo, R. C. E., da Silva M. R. and de Figueiredo, R. M. (2020) “Prediction and Context Awareness in Agriculture: A Systematic Mapping", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 3, pp. 45-58. ISSN 1804-1930. DOI 10.7160/aol.2020.120305.
  27. Nevyhoštěný, J. and Chripák, D. (2019) “Vínu letos hrají do not teploty, déšť i slunce. Přichází něco velkého, těší se vinaři“. [Online]. Available: https://zpravy.aktualne.cz/ekonomika/ceska-ekonomika/vino-v-cesku-prehled-data-spotreba-podoblasti-odrudy-vinice/r~00f4c460e1a611e88d4aac1f6b220ee8/ [Accessed: 20.8.2020] (In Czech).
  28. Průžek, T. (2019) “Vinařství 4.0–1. část“. [Online]. Available: https://www.prumysloveinzenyrstvi.cz/vinarstvi-4-0-1-cast/ [Accessed: 10 Sept. 2020]. (In Czech).
  29. Průžek, T. (2019) “Vinařství 4.0–2. část“ . [Online]. Available: https://www.prumysloveinzenyrstvi.cz/vinarstvi-4-0-2-cast/ [Accessed: 10 Sept. 2020]. (In Czech).
  30. Raddats, C., Kowalkowski, C., Benedettini, O., Burton, J. and Gebauer, H. (2019) "Servitization: A contemporary thematic review of four major research streams“, Industrial Marketing Management, Vol. 83, pp. 207-223. ISSN 0019-8501. DOI 10.1016/j.indmarman.2019.03.015.
  31. Santesteban, L. G. (2019) "Precision viticulture and advanced analytics. A short review", Food chemistry, Vol. 279, pp. 58-62. ISSN 0308-8146. DOI 10.1016/j.foodchem.2018.11.140.
  32. Smart Akis (2020) "Smart Farming Thematic Network“. [Online]. Available: https://www.smart-akis.com/ [Accessed: 20 Aug. 2020].
  33. Proffitt, T. (2015) “Precision viticulture”. [Online]. Available: https://www.evineyardapp.com/blog/2015/09/16/use-of-technology-in-the-vineyard/ [Accessed: 20 Oct. 2020].
  34. Sneddon, J., Soutar, G. and Mazzarol, T. (2011) “Modelling the Faddish, Fashionable and Efficient Diffusion of Agricultural Technologies: A Case Study of the Diffusion of Wool Testing Technology in Australia”, Technological Forecasting and Social Change, Vol. 78, pp. 468-480. ISSN 0040-1625. DOI 10.1016/j.techfore.2010.06.005.
  35. Spadoni, R., Nanetti, M., Bondanese, A. and Rivaroli, S. (2019) "Innovative solutions for the wine sector: The role of startups", Wine Economics and Policy, Vol. 8, No. 2, pp. 165-170. ISSN 2212-9774. DOI 10.1016/j.wep.2019.08.001.
  36. Srinivasan, A. (2006) “Handbook of precision agriculture. Principles and applications”, New York; London; Oxford: Food Products Press. ISBN 9781560229551. DOI 10.1201/9781482277968.
  37. Strouhal, J. (2020) “Starý svět, nové technologie. Už i vinařům pomáhá umělá inteligence“. [Online]. Available: https://digibiz.cz/stary-svet-nove-technologie-uz-i-vinarum-pomaha-umela-inteligence/ [Accessed: 20 Aug. 2020]. (In Czech).
  38. Vieri, M., Sarri, D., Rimediotti, M., Perria, R. and Storchi P. (2013) “The new architecture in the vineyard system management for variable rate technologies and traceability”, Acta Horticulturae, Vol. 978, pp. 47-53. ISBN 978-90-66052-09-3. ISSN 0567-7572. DOI 10.17660/ActaHortic.2013.978.3.
  39. Vinařství roku (2020) “O projektu“. [Online]. Available: https://www.vinarstviroku.cz/#o-projekty [Accessed: 20 Sept. 2020]. (In Czech).
  40. Voutos, Y., Mylonas, P., Spyrou, E. and Charou, E. (2018) "An IoT-based insular monitoring architecture for smart viticulture", In IEEE 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1-4. DOI 10.1109/IISA.2018.8633630.
  41. Vrontis, D., Bresciani, S. and Giacosa, E. (2016) “Tradition and innovation in Italian wine family businesses”, British Food Journal, Vol. 118, No. 8, pp. 1883-1897. ISSN 0007-070X. DOI 10.1108/BFJ-05-2016-0192.
  42. Wine regions of the Czech Republic (2020) “The Moravia Wine Region“ [Online]. Available: https://www.cmb-brno2020.cz/en/viticulture-in-cr/wine-regions/ [Accessed: 10 Sept. 2020].
  43. Yost, M. A., Kitchen, N. R., Sudduth, K. A., Sadler, E. J., Drummond, S. T. and Volkmann, M. R. (2017) “Long-term impact of a precision agriculture system on grain crop production”, Precision Agriculture, Vol. 18, No. 5, pp. 823-842. ISSN 1385-2256. DOI 10.1007/s11119-016-9490-5.

Full paper

  Full paper (.pdf, 1.42 MB).