Sentiment Analysis in Agriculture

DOI 10.7160/aol.2021.130109
No 1/2021, March
pp. 121-130

Novák, J., Benda, P., Šilerová, E., Vaněk, J. and Kánská, E. (2021) “Sentiment Analysis in Agriculture", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 121-130. ISSN 1804-1930. DOI 10.7160/aol.2021.130109.


Sentiment analysis is currently the most actively researched topic in the field of natural language processing, however, despite it being such a powerful tool, it is not very widely used in the agrarian sector. This research focuses on the discovery and analysis of scientific literature related to Sentiment analysis in agriculture, to provide an overview of how and where Sentiment analysis is used in the agrarian sector and which methods are most commonly used. This article also discusses which applications of Sentiment analysis yield the most benefits and suggests a direction for future research.


Sentiment analysis, agriculture, opinion mining, natural language processing, text mining.


  1. Ahmad, M., Aftab, S., Ali, I. and Hameed, N. (2017) “Hybrid Tools and Techniques for Sentiment Analysis: A Review”, International Journal of Multidisciplinary Sciences and Engineering, Vol. 8, No. 4, pp. 28-33. ISSN 2045-7057.
  2. Bermeo-Almeida O., Javier, D. C. M.F ., Cardenas-Rodriguez, M. and Cabezas-Cabezas R. (2019) “Sentiment Analysis in Social Networks for Agricultural Pests”, Proceedings of Second International Conference CITAMA 2019, Guayaquil, Ecuador, January 22-25. DOI 10.1007/978-3-030-10728-4_13.
  3. Bilan, Y., Mishchuk, H., Samoliuk, N. and Grishnova, O. (2019) "ICT and Economic Growth: Links and Possibilities of Engaging", Intellectual Economics, Vol. 13, No. 1. E-ISSN 1822-8038, ISSN 1822-8011. DOI 10.13165/IE-19-13-1-07.
  4. Cambria, E., Schuller, B., Xia, Y. and Havasi, C. (2013) “New Avenues in Opinion Mining and Sentiment Analysis”, IEEE Intelligent Systems, Vol. 28, No. 2, pp. 15-21. ISSN 1541 1672. DOI 10.1109/MIS.2013.30.
  5. Chukwunonso, F. and Tukur, A. (2012) “Problems and Prospects of Adopting ICT In Agriculture: Some Comments”, African Journal of Agricultural Research and Development, Vol. 5, No. 3. ISSN 2141-0097.
  6. D’Andrea, A., Ferri, F., Grifoni, P. and Guzzo, T. (2015) “Approaches, Tools and Applications for Sentiment Analysis Implementation”, International Journal of Computer Applications, Vol. 125, No. 3, pp. 26-33, ISSN 0975-8887. DOI 10.5120/ijca2015905866.
  7. Daum, T. (2018) “ICT Applications in Agriculture”, Encyclopedia of Food Security and Sustainability, Vol. 1, pp. 255-260. ISBN 9780128126882. DOI 10.1016/B978-0-08-100596-5.22591-2.
  8. Dave, K., Lawrence, S. and Pennock, D. M. (2003) “Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews”, Proceedings of the 12th international conference on World Wide Web, pp. 519-528. ISBN 978-1-58113-680-7. DOI 10.1145/775152.775226.
  9. Drury, B. and Roche, M. (2019) “A survey of the applications of text mining for agriculture”, Computers and Electronics in Agriculture, Vol. 163. ISSN 0168-1699. DOI 10.1016/J.COMPAG.2019.104864.
  10. Dunnmon, J., Ganguli, S., Hau, D. and Husic, B. (2017) “Predicting State-Level Agricultural Sentiment with Tweets from Farming Communities”, Final report for research project conducted as part of the Sustainability and Artificial Intelligence Laboratory (SAIL), Stanford University.
  11. Heege, H. J. (2013) “Precision in crop farming: Site specific concepts and sensing methods: Application and result”, Springer Netherlands, 12 p. ISBN 978-94-007-6760-7. DOI 10.1007/978-94-007-6760-7.
  12. Hooda, A. (2018) “Sentiment Analysis of Recent Tweets for Agriculture from BRICS Countries”, Master’s Thesis, Thapar University, Patiala, India. DOI 10.13140/RG.2.2.17830.68166.
  13. Hooda, E. and Hooda, A. (2018) “Sentiment Analysis through Recent Tweets for "Agriculture" in India”, Advances in Computer Science and Information Technology, Vol. 5, No. 2, pp. 86-91. E- ISSN 2393- 9915, ISSN 2393-9907.
  14. Hooda, E., Hooda, A., Hooda, B. K. and Tanwar, N. (2019) “Sentiment Analysis Through Tweets For ‘Doubling Farmers’ Income’ in India”, Asian Journal of Science and Technology, Vol. 9, No. 12, pp. 9101-9103. ISSN 0976-3376.
  15. Jurek, A., Mulvenna, M. D. and Bi, Y. (2015) “Improved lexicon-based Sentiment analysis for social media analytics”, Secur Inform, Vol. 4, No. 9. ISSN 2190-8532. DOI 10.1186/s13388-015-0024-x.
  16. Kostiukevych, R., Mishchuk, H., Zhidebekkyzy, A., Nakonieczny, J., and Akimov, O. (2020) "The impact of European integration processes on the investment potential and institutional maturity of rural communities", Economics and Sociology, Vol. 13, No. 3, pp. 46-63. ISSN 2071-789X. DOI 10.14254/2071-789X.2020/13-3/3.
  17. Li, J., Li, G., Liu, M., Zhu, X. and Wei, L. (2020) “A novel text-based framework for forecasting agricultural futures using massive online news headlines”, International Journal of Forecasting, ISSN 0169-2070. DOI 10.1016/j.ijforecast.2020.02.002.
  18. Liu, B. (2012) “Sentiment Analysis and Opinion Mining”, Morgan & Claypool Publishers, 167 p. ISBN 9781608458844. DOI 10.2200/S00416ED1V01Y201204HLT016.
  19. McNamara, K., Belden, C., Pehu, E. and Donovan, K. (2017) “Introduction: ICT in Agricultural Development”, ICT in Agriculture (Updated Edition): Connecting Smallholders to Knowledge, Networks and Institutions. E-ISBN 978-1-4648-1023-7, ISBN 978-1-4648-1002-2. DOI 10.1596/978-1-4648-1002-2_Module1.
  20. Muhammad, K., Mastuki, N., Darus, F. and Ghani, E. K. (2019) "Accounting information system change in an agriculture company: Examination using burns and scapens framework", Journal of International Studies, Vol. 12, No. 1, pp. 105-118. E-ISSN 2306-3483, ISSN 2071-8330. DOI 10.14254/2071-8330.2019/12-1/7.
  21. Nasukawa T. and Yi, J. (2003) “Sentiment analysis: Capturing favorability using natural language processing”, K-CAP 2003-Proceedings of the 2nd International Conference on Knowledge Capture, October 23-25, 2003, Sanibel Island, FL, USA. pp. 70-77. ISBN 1-58113-583-1. DOI 10.1145/945645.945658.
  22. Nimirthi, P., Krishna, P. V., Obaidat, M. S. and Saritha, V. (2018) “A Framework for Sentiment Analysis Based Recommender System for Agriculture Using Deep Learning Approach", In: Social Network Forensics, Cyber Security, and Machine Learning. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. ISBN 978-981-13-1455-1. DOI 10.1007/978-981-13-1456-8_5.
  23. Ofori, M. and El-Gayar, O. (2020) “Drivers and challenges of precision agriculture: a social media perspective”, Precision Agriculture. E-ISSN 1573-1618, ISSN 1385-2256. DOI 10.1007/s11119-020-09760-0.
  24. Pierpali, E., Carli, G., Pignatti, E. and Canavari, M. (2013) “Drivers of Precision Agriculture Technologies Adoption: A Literature Review”, Procedia Technology, Vol. 8, pp. 61-69. ISSN 2212-0173. DOI 10.1016/j.protcy.2013.11.010.
  25. Saberi, B. and Saad, S. (2017) “Sentiment Analysis or Opinion Mining: A Review”, International Journal on Advanced Science Engineering and Information Technology, Vol. 7, No. 5, pp. 1660-1666. ISSN 2088-5334. DOI 10.18517/ijaseit.7.5.2137.
  26. Salim, J. M., Trisnawarman, D. and Imam, M. C. (2020) “Twitter Users Opinion Classification of Smart Farming in Indonesia”, IOP Conference Series Materials Science and Engineering. ISSN 1757-899X. DOI 10.1088/1757-899X/852/1/012165.
  27. Shaibu, A., Hudu, Z. and Israel, M. (2018) “Digital Technology and Rural Livelihood-A Study of Peasant Communities in Pru District?”, AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 4, pp. 71-78. ISSN. 1804-1930. DOI 10.7160/aol.2018.10040.
  28. Singh, M., Goyal, V. and Raj, S. (2019) “Sentiment Analysis of English-Punjabi Code-Mixed Social Media Content for Agriculture Domain”, 4th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, pp. 352-357. DOI 10.1109/ISCON47742.2019.9036204.
  29. Toomsalu, L., Tolmacheva, S., Vlasov, A. and Chernova, V. (2019) “Determinants of innovations in small and medium enterprises: a European and international experience”, Terra Economicus, Vol. 17, Issue 2, pp. 112-123. E-ISSN 2410-4531, ISSN 2073-6606. DOI 10.23683/2073-6606-2019-17-2-112-123.
  30. Valsamidis, S., Thedosiou, T., Kazanidis, I. and Nikolaidis M. (2013) “A Framework for Opinion Mining in Blogs for Agriculture”, Procedia Technology, Vol. 8, pp. 264-274. E-ISSN 2212-0173. DOI 10.1016/j.protcy.2013.11.036.
  31. Walaa, M., Hassan, A. and Korashy, H. (2014) “Sentiment analysis algorithms and applications: A survey”, Ain Shams Engineering Journal, Vol. 5, No. 4., pp. 1093-1113. ISSN 2090-4479. DOI 10.1016/j.asej.2014.04.011.

Full paper

  Full paper (.pdf, 959.71 KB).