Predicting Trends in Cereal Production in the Czech Republic by Means of Neural Networks

DOI 10.7160/aol.2021.130107
No 1/2021, March
pp. 87-103

Malinovský, V. (2021) “Predicting Trends in Cereal Production in the Czech Republic by Means of Neural Networks", AGRIS on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 87-103. ISSN 1804-1930. DOI 10.7160/aol.2021.130107.


This paper deals with problems of processing agricultural production data into the form of time series and analysing consequent results by means of two completely different methods. The first method for calculating cereals production figures uses the MS-Excel spreadsheet using conventional mathematical and statistical functions while the second one uses the ELKI software providing users with development environment including algorithms of neural networks. The obtained results are similar to a certain extent which shows new possibilities of progressive use of neural networks in future and enables modern approach to analysing time series not only in agricultural sector.


Comparative analysis, cereals production, ELKI software, Excel spreadsheet, neural networks, predicting, statistics, time series, trends.


  1. Allen, P. G. (1994) “Economic forecasting in agriculture”, International Journal of Forecasting, Vol. 10., No. 1, pp. 81-135. ISSN 0169-2070. DOI 10.1016/0169-2070(94)90052-3.
  2. Brož ová , I. and Beranová, M. (2017) “A Comparative Analysis of Organic and Conventional Farming Profitability”, AGRIS on-line Papers in Economics and Informatics, Vol. 9, No 1, pp. 3-15, ISSN 1804-1930. DOI 10.7160/aol.2017.090101.
  3. Chen, J. (2019) “Neural network applications in agricultural economics”, University of Kentucky Doctoral Dissertations 228. [Online]. Available: [Accessed: 10 Sept 2020].
  4. Czech Statistic Office (2019) “Zemědělství – časové řady” (Agriculture - time series), [Online]. Available: [Accessed: 5 July 2020]. (In Czech).
  5. Habyarimana, J. B. (2014) “Forecasting Crop Production: A Seasonal Regression Model Decomposition of MAPE and SMAPE”, David Publishing Company, Agriculture Statistician, Ministry of Agriculture and Animal Resources, Kigali – Rwanda. DOI 10.17265/2328-224X/2014.05.004.
  6. Hruška, J. (2019) “Přehlížená proměna zemědělství” (Overlooked transformation of agriculture), Vesmír 4. [Online]. Available: [Accessed: 4 Sept 2020]. ISSN 0042-4544 2009. (In Czech).
  7. Kabáth D. (2009) “Neuronové sítě základy z teorie a praxe – Úvod do umělé inteligence” (Neural networks basics of theory and practice - Introduction to artificial intelligence ).[Online]. Available: [Accessed: 4 Sept 2020], Masaryk Univerzity, Brno, Czech Republic (In Czech).
  8. Kačer, P. (2013) “Vícevrstvá neuronová síť” (Multilayer neural network), bachelor´s thesis, Brno University of Technology, Faculty of Electrical Engineering and Communications, Department of Control and Instrumentation. Brno, Czech Republic. (In Czech).
  9. Köppelová, J. and Jindrová, A. (2019) “Application of Exponential Smoothing Models and Arima Models in Time Series Analysis from Telco Area", AGRIS on-line Papers in Economics and Informatics, Vol. 11, No. 3, pp. 73-84. ISSN 1804-1930. DOI 10.7160/aol.2019.110307.
  10. Köppelová, J. and Jindrová, A. (2017) “Comparative Smoothing – Study of Short-Term Time Series Models: Use of Mobile Telecommunication Services in CR Regions", AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 1, pp. 77 - 89. ISSN 1804-1930. DOI 10.7160/aol.2017.090107.
  11. Köppelová, J. and Svatošová, L. (2019) “Time Series Models: Development Trends of Foodstuffs Consumption in CR Considering Healthy Eating", AGRIS on-line Papers in Economics and Informatics, Vol. 11, No. 2, pp. 43-53. ISSN 1804-1930. DOI 10.7160/aol.2019.110205.
  12. Kung, H. Y., Kuo, T. H., Chen, Ch. H. and Tsai, P. Y. (2018) “Accuracy Analysis Mechanism for Agriculture Data Using the Ensemble Neural Network Method”, Sustainability, No. 8, Vol. 8, 735 p. ISSN 2071-1050. DOI 10.3390/su8080735.
  13. Kůst, F. and Záruba, J. (2020) “Situační a výhledová zpráva – Obiloviny” (Situation and outlook report - Cereals), MInistry of Agriculture of the CR. [Online]. Available: [Accessed: 15 Aug 2020]. ISSN 1211-7692 (In Czech).
  14. Liu, G., Yang, X. and Li, M. (2005) “An Artificial Neural Network Model for Crop Yield Responding to Soil Parameters”, International Symposium on Neural Networks, ISNN 2005: Advances in Neural Networks, pp. 1017-1021, ISBN 978-3-540-25914-5. DOI 10.3390/su8080735.
  15. Malinovský, V. (2020) “Comparative analysis of freight transport prognoses results provided by transport system model and neural network”, Neural Network World, CTU Publishing , Prague. ISBN 23364335.
  16. Melart, S. (2015) "Microsoft Office 2016: The Complete Guide", CreateSpace Publishing, Scotts Valley, California, USA. ISBN 9781519282347.
  17. Némethová, J., Svobodová, H., Křejčí, O. and Věžník, A. (2020) “Development of crop production in the Slovakia and Czechia after the year, Bulletin of Geography. Socio-economic Series, Vol. 50, No. 50. ISSN 1732-4254. DOI 10.2478/bog-2020-0028.
  18. Niedbała, G. (2019) “Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield”, Journal of Integrative Agriculture, Vol. 18, No. 1, pp 54-61, ISSN 2095-3119. DOI 10.1016/S2095-3119(18)62110-0.
  19. Obitko, M. (1999) “Prediction using neural networks”. [Online]. Available: [Accessed: 11 Aug 2020].
  20. Pattreson D. (1996) “Artificial Neural networks – Theory and Applications”, Prentice Hall, Upper Saddle River, USA. ISBN 978-0132953535.
  21. Phillips, J. G. and Hansen, J. W. (2001) “Forecast applications in agriculture: Approaches, issues, and challenges”. [Online]. Available: [Accessed: 11 Aug 2020].
  22. Rakhmatulin, I. (2020) “Neural network for automatic farm control”, Journal of Experimental & Theoretical Artificial Intelligence, Vol. 33, No. 1, pp. 147-160. ISSN 1362-3079. DOI 10.1080/0952813X.2020.1725653.
  23. Singireddy, N. (2010) “Analytics based on artificial neural network: A case study based on Iowa corn yield forecasting”, Bachelor´s work, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India.
  24. Šnorek M. (1996) "Neuronové sítě a neuropočítače" (Neural networks and neurocomputers), textbook, CTU Publishing, Prague. ISBN 80-01-01455-X. (In Czech).
  25. Šťastný J., Konečný, V. and Trenz, O. (2011) “Agricultural data prediction by means of neural network”, Agricultural Economics – Czech , Vol. 57, No. 7, pp. 356-361. ISSN 0139-570X. DOI 10.17221/108/2011-AGRICECON.
  26. Yao, C., Zhang, Y. and Liu, H. (2017) “Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images”, ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-2/W7, pp. 989-992. ISSN 2194-9034. DOI 10.5194/isprs-archives-XLII-2-W7-989-2017.

Full paper

  Full paper (.pdf, 1.68 MB).