The Impact of Energy Consumption and Agricultural Production on Carbon Dioxide Emissions in Portugal

DOI 10.7160/aol.2020.120105
No 1/2020, March
pp. 49-59

Leitão, N. C. and Balogh, J. M. (2020) “The Impact of Energy Consumption and Agricultural Production on Carbon Dioxide Emissions in Portugal ", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 1, pp. 49-59. ISSN 1804-1930. DOI 10.7160/aol.2020.120105.

Abstract

The consequences of climate change heavily influence the Mediterranean region. However, the Portuguese CO2 emission shows a decreasing tendency, the evolution of livestock and animal production have significantly increased its level in agriculture. The article investigates the role of the agricultural output and energy consumption in the environmental pollution in Portugal. It explores the short and long-run cointegration between carbon dioxide emissions and agricultural activities such as crop production, livestock production, and agricultural land use applying Autoregressive Distributed Lag (ARDL), Granger causality, Newey-West Standard Errors regression, as well as ARIMA model for the period of 1960-2015. The causality relation between CO2 emissions and agriculture is also analyzed. The Augmented Dickey-Fuller (ADF) unit root tests suggest that all variables are stationary. ARDL model demonstrates a long-run relationship between CO2 emissions, agriculture, and energy consumption. Results indicate that agricultural activities and energy use have a positive effect on environmental pollution; therefore, the Portuguese agriculture needs to achieve a higher level of sustainable development, with reducing the impact of animal husbandry and intensive crop production.

Keywords

Climate change, carbon dioxide emissions, agricultural production, time series, Portugal.

References

  1. Acheampong, A., O. (2018) “Economic growth, CO2 emissions and energy consumption: What causes what and where?“, Energy Economics, Vol. 74, pp. 677-692. ISSN 0140-9883. DOI 10.1016/j.eneco.2018.07.022.
  2. Appiah, K., Du, J. and Poku, J. (2018) “Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies“, Environmental Science and Pollution Research, Vol. 25, pp. 24764-24777. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-018-2523-z.
  3. Balogh, J. M. and Jambor, A. (2017) “Determinants of CO2 emission: A global evidence“, International Journal of Energy Economics and Policy, Vol. 75, No. 5, pp. 217-226. ISSN 2146-4553
  4. Beşer, M. K. and Beşer, B. H. (2017) “The relationship between energy consumption, CO2 emissions and GDP per capita: A revisit of evidence from Turkey“, The Journal of Operations Research, Statistics, Econometrics and Management Information Systems, Vol. 5, No 3, pp. 353-367. E-ISSN 2148-2225. DOI 10.17093/alphanumeric.353957.
  5. Desjardins, R. L., Worth, D. E., Vergé, X. P. C., VanderZaag, A., Janzen, H., Kroebel, R. and Dyer, J. A. (2014) “Carbon Footprint of Agricultural Products - A Measure of the Impact of Agricultural Production on Climate Change“, Agriculture and agro-food Canada [Online]. Available: http://www.wamis.org/agm/meetings/teco14/S5-Desjardins.pdf [Accessed: 10 Feb, 2019].
  6. Edoja, P. E., Aye, G. C. and Abu, O. (2016) “Dynamic relationship among CO2 emission, agricultural productivity and food security in Nigeria“, Cogent Economics and Finance, Vol. 4, pp. 1-13. E-ISSN 2332-2039. DOI 10.1080/23322039.2016.1204809.
  7. Eurostat (2018) "European Union’s Agriculture, Greenhouse gas emission statistics" [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Agriculture_-_greenhouse_gas_emission_statistics [Accessed: 15 Jan, 2019].
  8. EPA (2018) "United States Environmental Protection Agency. Greenhouse gas emission data". [Online]. Available: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data [Accessed: 18 Jan. 2019].
  9. Food and Agriculture Organization (FAO) Data [Online]. Available: http://www.fao.org/faostat/en/#home [Accessed: 18 Jan, 2019].
  10. Hongdou, L., Shiping, L. and Hao, L. (2018) “Existing agricultural ecosystem in China leads to environmental pollution: an econometric approach“, Environmental Science and Pollution Research, Vol. 25, pp. 24488–24499. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-018-2461-9.
  11. Jebli, M., B. and Youssef, S. B. (2017) “The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries“, Ecological Indicators, Vol. 74, pp. 295-301. ISSN 1470-160X. DOI 10.1016/j.ecolind.2016.11.032.
  12. Kais, S. and Mbarek, M. B. (2017) “Dynamic relationship between CO2 emissions, energy consumption and economic growth in three North African countries“, International Journal of Sustainable Energy, Vol. 36, No. 9, pp. 840-854. E-ISSN 1478-646X. ISSN 1478-645. DOI 10.1080/14786451.2015.1102910.
  13. Khan, M. T. I., Ali, Q. and Ashfaq, M. (2018) “The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan,“ Renewable Energy, Vol. 118, pp. 437-451. ISSN 0960-1481. DOI 10.1016/j.renene.2017.11.043.
  14. Kripfganz, S. and Schneider, D. C. (2018) “Response surface regressions for critical value bounds and approximate p-values in equilibrium correction models“, Manuscript, University of Exeter and Max Planck Institute for Demographic Research. [Online]. Available: www.kripfganz.de/research/Kripfganz_Schneider_ec.html [Accessed: 8 Feb, 2019].
  15. Kripfganz, S. and Schneider, D. C. (2016) “Ardl: Stata module to estimate autoregressive distributed lag models“, Presented July 29, 2016, at the Stata Conference, Chicago [Online]. Available: Available: fmwww.bc.edu/repec/chic2016/chicago16_kripfganz.pdf [Accessed: 8 Feb, 2019].
  16. Leitão, N. C. (2015) “Energy Consumption and Foreign Direct Investment: A Panel Data Analysis for Portugal“, International Journal of Energy Economics and Policy, Vol. 5, No. 1, pp. 138-147. ISSN 2146-4553.
  17. Mara, F. P. O. (2011) “The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future“, Animal Feed Science and Technology, Vol. 166-167, pp. 7-15. ISSN 0377-8401. DOI 10.1016/j.anifeedsci.2011.04.074.
  18. Marques, A. C., Fuinhas, J. A. and Pais, D. F. (2018) “Economic growth, sustainable development and food consumption: Evidence across different income groups of countries“, Journal of Cleaner Production, Vol. 196, pp. 245-258. ISSN 0959-6526. DOI 10.1016/j.jclepro.2018.06.011.
  19. Mahmood, H. and Alkhateeb, T. T. Y. (2017) “Trade and Environment Nexus in Saudi Arabia: An Environmental Kuznets Curve Hypothesis“, International Journal of Energy Economics and Policy, Vol. 7, No. 5, pp. 291-295. ISSN 2146-4553.
  20. Matthew O., Osabohien, R., Fasina, F. and Fasina, A. (2018) “Greenhouse Gas Emissions and Health Outcomes in Nigeria: Empirical Insight from ARDL Technique“, International Journal of Energy Economics and Policy, Vol. 8, No. 3, pp. 43-50. ISSN 2146-4553.
  21. Mourão, P. R. and Domingues Martinho, V. (2017) “Portuguese agriculture and the evolution of greenhouse gas emissions - can vegetables control livestock emissions?“, Environmental Science and Pollution Research, Vol. 24, No. 19, pp. 16107–16119. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-017-9257-1.
  22. Och, M. (2017) “Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia“, International Journal of Energy Economics and Policy, Vol. 7, No. 1, pp. 117-128. ISSN 2146-4553.
  23. Ozturk, I. and Acaravci, A. (2011) “Electricity Consumption and real GDP Causality Nexus: Evidence from ARDL Bounds Testing Approach for 11 MENA Countries“, Applied Energy, Vol. 88, No. 8, pp. 2885-2892. ISSN 0306-2619. DOI 10.1016/j.apenergy.2011.01.065.
  24. Pesaran, M. H., Shin, Y. and Smith, R. J. (2001) “Bounds testing approaches to the analysis of level relationships“, Journal of Applied Econometrics, Vol. 16, pp. 289-326. ISSN 1099-1255. DOI 10.1002/jae.616.
  25. Pesaran, M. H. and Shin, Y. (1999) “An autoregressive distributed lag modeling approach to cointegration analysis“, In: Strom, S. (editor) "Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium". Ch. 11. Cambridge: Cambridge University Press. E-ISBN 9781139052221.
  26. PIA (2013) “Portuguese Environmental Agency Portuguese National Invert Report on Greenhouse Gases 1990–2011“, Submitted under the United Nations Frame- work convention on Climate change and the Kyoto.
  27. Ritchie, H. (2017) “How much of the world’s land would we need in order to feed the global population with the average diet of a given country? Our World in Data“. October 3, 2017 [Online]. Available: https://ourworldindata.org/agricultural-land-by-global-diets [Accessed: 20 Jan. 2019].
  28. Shahbaz, M., Dube, S., Ozturk, I. and Jali, A. (2015) “Testing the environmental Kuznets curve hypothesis in Portugal“, International Journal of Energy Economics and Policy, Vol. 5, No. 2, pp. 475- 481. ISSN 2146-4553.
  29. Shahbaz, M., Hye, A. M. Q, Tiwari, A. K. and Leitão, N. C. (2013) “Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia“, Renewable and Sustainable Energy Reviews, Vol. 25, pp. 109-121. ISSN 1364-0321. DOI 10.1016/j.rser.2013.04.009..
  30. Shahbaz, M. and Leitão, N. C. (2013) “Portuguese carbon dioxide emissions and economic growth: A time series analysis“, Bulletin of Energy Economics, Vol. 1, No. 1, pp. 1-7.
  31. Sarkodie, S. A. and Owusu, P. A. (2017) “The relationship between carbon dioxide, crop and food production index in Ghana: By estimating the long-run elasticities and variance decomposition“, Environmental Engineering Research, Vol. 22, No. 2, pp. 193-202. E-ISSN 2005-968X, ISSN 1226-1025. DOI 10.4491/eer.2016.135.
  32. Statista (2018) “Carbon Dioxide emissions in Portugal from 2000-2017 (in million metric tons of CO2)“. [Online]. Available: https://www.statista.com/statistics/449812/co2-emissions-portugal/ [Accessed: 15 Jan. 2019].
  33. Tan, C. C. and Tan, S. (2018) “Energy Consumption, CO2 Emissions and Economic Growth: A Causality Analysis for Malaysian Industrial Sector“, International Journal of Energy Economics and Policy, Vol. 8, No. 4, pp. 254-258. ISSN 2146-4553.
  34. Torres, P., Ferreira, J. Monteiro, A., Costa, S., Pereira, M. C., Madureira, J., Mendes, A. and Teixeira, J. P. (2018) “Air pollution: A public health approach for Portugal“, Science of The Total Environment, Vol. 643, pp. 1041-1053. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2018.06.281.
  35. Ullah, A., Khan, D., Khan I. and Zheng, S. (2018) “Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace“, Environmental Science and Pollution Research, Vol. 25, No. 2, pp. 1-18. E-ISSN 1614-7499, ISSN 0944-1344. DOI 10.1007/s11356-018-1530-4.
  36. Waheed R., Chang, D., Sarwar, S. and Chen, W. (2018) “Forest, agriculture, renewable energy, and CO2 emission“, Journal of Cleaner Production, Vol. 172, pp. 4231-4238. DOI 10.1016/j.jclepro.2017.10.287.
  37. World Bank (2018) "World Development Indicators’ data". [Online]. Available: http://datatopics.worldbank.org/world-development-indicators/ [Accessed: 20 Feb. 2019].

Full paper

  Full paper (.pdf, 386.49 KB).