Towards Future Oriented Collaborative Policy Development for Rural Areas and People

DOI 10.7160/aol.2020.120110
No 1/2020, March
pp. 111-124

Ulman, M., Šimek, P., Masner, J., Kogut, P., Löytty, T., Crehan, P., Charvát, K., Oliva, A., Bergheim, S. R., Kalaš, M., Kolokol, D. and Sabbatini, T. (2020) “Towards Future Oriented Collaborative Policy Development for Rural Areas and People", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 1, pp. 111-124. ISSN 1804-1930. DOI 10.7160/aol.2020.120110.

Abstract

Rural areas in Europe are at risk due to depopulation, failing generation renewal, and a multitude of influences ranging from market-based, regulatory, to societal and climate changes. As a result, current rural policy is no longer keeping pace with these changes. We propose an advanced rural policy development framework in order to deliver more accurate foresight for rural regions, contributing to new and enhanced policy interventions. The proposed framework combines new quantitative and qualitative epistemological approaches, previously unused unstructured data with traditional research information, grassroot perspective with expert knowledge, current situation analysis with forward looking activities. We argue that by using the proposed methods, policy teams will be able to enhance the effectiveness of their policy making processes, while rural stakeholders will be given the opportunity to become valuable policy influencers and solution co-creators. The ability to quickly experiment and understand the impact of a variety of policy solutions will result in saved time and costs. The framework is part of an ongoing experimental verification and testing in twelve pilot regions across Europe and Israel.

Keywords

Rural areas, policy, European Union, foresight, text mining, system dynamics modelling.

References

  1. Ackerman, M. J. (2014) “The medical data tsunami”, The Journal of medical practice management: MPM, p. 406. ISSN 8755-0229.
  2. Ahn, M. J. and Bretschneider, S. (2011) “Politics of e‐government: E‐government and the political control of bureaucracy”, Public Administration Review, Vol. 71, No. 3, pp. 414-424. DOI 10.1111/j.1540-6210.2011.02225.x.
  3. AIMS (2018) AGROVOC.
  4. ARIS (2015) "OpenMinted". [Online]. Available: http://openminted.eu/about/ [Accessed: Dec. 10, 2018].
  5. Berriman, G. and Groom, S. (2011) “How will astronomy archives survive the data tsunami?”, Communications of the ACM, pp. 52-56. ISSN 0001-0782. DOI 10.1145/2043174.2043190.
  6. Bourgeois, R., Penunia, E., Bisht, S. and Boruk, D. (2017) “Foresight for all: Co-elaborative scenario building and empowerment”, Technological Forecasting and Social Change, Vol. 124 (C), pp. 178-188. ISSN 0040-1625. DOI 10.1016/j.techfore.2017.04.018.
  7. Brose, A., Gausemeier, P., Vierhaus, I., Fügenschuh, A. and Selinger, G. (2013) “A system dynamic enhancement for the scenario technique”, Proceedings of 11th Global Conference on Sustainable Manufacturing, pp. 561-566, Universitätsverlag der TU Berlin.
  8. Bryden, J. M. (2010) "Using system dynamics for holistic rural policy assessments and data envelopment analysis for evaluation of comparative policy efficiency at regional level", 118th Seminar, August 25-27, 2010, Ljubljana, Slovenia ,European Association of Agricultural Economists. DOI 10.22004/ag.econ.94618.
  9. CDU (no date) Pastoral Properties Futures Simulator.
  10. Chun, S., Shulman, S., Sandoval, R., Hovy, E. (2010) “Government 2.0: Making connections between citizens, data and government”, Information Polity, Vol. 15, No. 1, 2, pp. 1-9. ISSN 1570-1255. DOI 10.3233/IP-2010-0205.
  11. CORDIS (2013) Towards a Policy Model of Multifunctional Agriculture and Rural Development [TOP-MARD].
  12. DG Agri (2017) Young farmers in the EU – structural and economic characteristics.
  13. EFP (2010) "European Foresight Platform". [Online]. Available: http://www.foresight-platform.eu [Accessed: Dec. 10, 2018].
  14. European Commission (2018) "Horizon Europe - the next research and innovation framework programme". [Online]. Available at: https://ec.europa.eu/info/horizon-europe-next-research-and-innovation-framework-programme_en [Accessed: Dec. 5, 2018].
  15. Fisher, R., Chicot, J., Domini, A., Polt, W., Turk, A., Unger, M. and Goetheer, A. (2018) "Mission-oriented research and innovation: Inventory and characterisation of initiatives-Study", European Commission EC. ISBN 978-92-79-85793-5. DOI 10.2777/697082.
  16. Fontela, E. (2000) “Bridging the gap between scenarios and models”, Foresight, Vol. 2, No. 1, pp. 10-14. ISSN 1463-6689. DOI 10.1108/14636680010802447.
  17. Fortes, P., Alvarenga, A., Seixas, J. and Rodrigue, J. (2015) “Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling”, Technological Forecasting and Social Change, Vol. 91, pp. 161-178. ISSN 0040-1625. DOI 10.1016/j.techfore.2014.02.006.
  18. Greiner, R., Puig, J., Huchery, C., Collier, N. and Garnett, S. T. (2014) “Scenario modelling to support industry strategic planning and decision making”, Environmental Modelling & Software, Vol. 55, pp. 120-131. ISSN 1364-8152. DOI 10.1016/j.envsoft.2014.01.011.
  19. Grupolys (2017) Fast Parse.
  20. Van Herzele, A., Gobin, A.,Van Gossum, P., Acosta, L., Waas, T., Dendoncker, T. and de Frahan, B. H. (2013) “Effort for money? Farmers’ rationale for participation in agri-environment measures with different implementation complexity”, Journal of Environmental Management, Vol. 131, pp. 110-120. ISSN 0301-4797. DOI 10.1016/j.jenvman.2013.09.030.
  21. Hines, A. and Bishop, P. C. (2013) “Framework foresight: Exploring futures the Houston way,” Futures, Vol. 51, pp. 31-49. ISSN 0016-3287. DOI 10.1016/j.futures.2013.05.002.
  22. Kano, E., Fujita, Y. and Tsuda, K. (2019) “A Method of Extracting and Classifying Local Community Problems from Citizen-Report Data using Text Mining”, Procedia Computer Science, Vol. 159, pp. 1347-1356. ISSN 0016-3287. DOI 10.1016/j.procs.2019.09.305.
  23. Kayser, V. and Blind, K. (2017) “Extending the knowledge base of foresight: The contribution of text mining”, Technological Forecasting and Social Change. Vol. 116, pp. 208-215. ISSN 0040-1625. DOI 10.1016/j.techfore.2016.10.017.
  24. Lin, J. C.-W., Shao, Y., Fournier-Viger, P. and Hamido, F. (2019) “BILU-NEMH: A BILU neural-encoded mention hypergraph for mention extraction”, Information Sciences, pp. 53-64. ISSN 0040-1625. DOI 10.1016/j.ins.2019.04.059.
  25. Mazzucato, M. (2018) “Mission-oriented research & innovation in the European Union”, Brussels: European Commission. ISBN 978-92-79-79918-1.
  26. Melo, D., Melo, D., Toledo, S., Mourão, F., Sachetto, R., Andrade, G., Ferreira, R., Parthasarathy, S. and Rocha, L. (2016) “Hierarchical Density-Based Clustering Based on GPU Accelerated Data Indexing Strategy”, Procedia Computer Science, pp. 951-961. ISSN 1877-0509. DOI 10.1016/j.procs.2016.05.389.
  27. Nikolova, B. (2014) “The rise and promise of participatory foresight”, European Journal of Futures Research, Vol. 2, No. 1, pp. 33. ISSN 21952248. DOI 10.1007/s40309-013-0033-2.
  28. Nivre, J. (2008) “Algorithms for Deterministic Incremental Dependency Parsing”, Computational Linguistics, pp. 513-553. E-ISSN 1530-9312, ISSN 0891-2017. DOI 10.1162/coli.07-056-R1-07-027.
  29. SDS (2018) "Special Interest Groups (SIGs)". [Online]. Available: https://www.systemdynamics.org/society-sigs [Accessed: Dec. 10, 2018].
  30. Skyttner, L. (2005) "General systems theory: Problems, perspectives, practice", World scientific. 2nd edition. ISBN 978-981-4479-98-1. p. 536. DOI 10.1142/5871.
  31. Staman, J., Berloznik, R., Weber, M., Salo, A., and Havas, A. (2017) "Report of the Expert Group 'Strategic Foresight for R&I Policy in Horizon 2020´", Background papers, Publications Office of the European Union. ISBN 978-92-79-68543-9. DOI 10.2777/768916.
  32. Stevenson, M. and Wilks, Y. (2001) “The Interaction of Knowledge Sources in Word Sense Disambiguation”, Computational Linguistics, pp. 321-349. E-ISSN 1530-9312, ISSN 0891-2017. DOI 10.1162/089120101317066104.
  33. UNIBO (2016) "PERCEIVE". [Online]. Available: https://www.perceiveproject.eu/about-the-project/ [Accessed: Dec. 10, 2018].
  34. Westhoek, H. J., van den Berg, M. and Bakkes, J. A. (2006) “Scenario development to explore the future of Europe’s rural areas”, Agriculture, Ecosystems and Environment, pp. 7-20. ISSN 0167-8809. DOI 10.1016/j.agee.2005.11.005.
  35. Wiebe, K., Zurek, M., Lord, S., Brzezina, N., Gabrielyan, G., Libertini, J., Loch, A., Thapa-Parajuli, R., Vervoort, J. and Westhoek, H. (2018) “Scenario Development and Foresight Analysis: Exploring Options to Inform Choices”, Annual Review of Environment and Resources, pp. 545-570. ISSN 1543-4938. DOI 10.1146/annurev-environ-102017-030109.
  36. Ye, X., Shen, H., Ma, X. and Bunescu, R. C. (2016) “From Word Embeddings to Document Similarities for Improved Information Retrieval in Software Engineering”, 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), ACM, pp. 404-415. DOI 10.1145/2884781.2884862.
  37. Zander, J. and Mähönen, P. (2013) “Riding the data tsunami in the cloud: myths and challenges in future wireless access”, IEEE Communications Magazine, pp. 145-151. E-ISSN 1558-1896, ISSN 0163-6804. DOI 10.1109/MCOM.2013.6476879.

Full paper

  Full paper (.pdf, 3.02 MB).