Economic Aspects of Precision Agriculture Systems

DOI 10.7160/aol.2020.120306
No 3/2020, September
pp. 59-67

Pánková, L., Aulová, R. and Jarolímek, J. (2020) “Economic Aspects of Precision Agriculture Systems", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 3, pp. 59-67. ISSN 1804-1930. DOI 10.7160/aol.2020.120306.


The paper deals with an economic assessment of impacts of precision agriculture (PA) on crop production economy. Based on a questionnaire survey and a FADN agricultural product expense-to-revenue ratio survey, it analyses a set of agricultural businesses the structure of which essentially copies the composition of business forms in the Czech Republic’s agricultural sector. The economic assessment applies economic analysis methods based on cost calculations and a calculation formula that considers the commodity and species production structure. Based on an analysis of a number of scientific studies, it determines specific cost savings and makes a quantification of the effect of precision agriculture techniques on costs. In all the production areas, the greatest effect caused by application of precision agriculture techniques was quantified for winter wheat. Conversely, the lowest financial effects are shown in the analysed production areas for spring wheat. We also identified differences in the cost savings between spring and winter barley; the greater savings occur for winter barley. Financial effects in the form of reduced production costs were also found for other analysed crops cultivated by the businesses studied. The financial savings for the pea plant are almost comparable to those for winter barley. The greatest financial savings were achieved for sugar beet.


Precision agriculture, economic savings, techniques, work operations, costs, calculation formula.


  1. Brant, V., Kroulík, M., Zábranský, P. and Škeř, M. . (2016) "Nižší výsevky a zonální aplikace hnojiv při pěstování obilnin jako základ precizního zemědělství“, Agro journal. [Online]. Available: [Accessed: 12. Dec. 2019]. (In Czech).
  2. Buchtel, F. (2016) "Vyhodnocení ekonomické efektivity systému precizního zemědělství v podmínkách vybrané farmy v ČR“, Bachelor thesis, University of South Bohemia in České Budějovice, Faculty of Economics, tutor: Antonín Dolan. (In Czech).
  3. Calegari, F., Tassi, D. and Vincini, M. (2013) "Economic and environmental benefits of using a spray control system for the distribution of pesticides“, Journal of Agricultural Engineering, Vol. 44, No. 2s, pp. 163-165. E-ISSN 2239-6268. DOI 10.4081/jae.2013.274.
  4. Cassman, K. G. (1999) "Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture“, Proceedings of the National Academy of Science of the United States of America, Vol. 96, No. 11, p. 5952-5959. E-ISSN 1091-6490. DOI 10.1073/pnas.96.11.5952.
  5. Cordesses, L., Cariou, C. and Berducat, M. (2000) "Combine harvester control using Real Time Kinematic GPS“, Precision Agriculture, Vol. 2, No. 2, pp. 147-161. E-ISSN 1573-1618, ISSN 1385-2256. DOI 10.1023/A:1011473630247.
  6. Debain, C., Chateau, T., Berducat, M., Martinet, P. and Bonton P. (2000) "A guidance-assistance system for agricultural vehicles“, Computers and Electronics in Agriculture, Vol. 25, No. 1-2, pp. 29-51. ISSN 0168-1699. DOI 10.1016/S0168-1699(99)00054-X.
  7. Dunn, P. K., Powierski, A. P. and Hill, R. (2006) "Statistical evaluation of data from tractor guidance systems“, Precision Agriculture, Vol. 7, No. 3, pp. 179-192. E-ISSN 1573-1618, ISSN 1385-2256. DOI 10.1007/s11119-006-9007-8.
  8. Godwin, R., Earl, R., Taylor, J. C., Wood, G. A., Bradley, R. I., Welsh, J. P., Richards, T. and Blackmore, B. S. (2002) "Precision farming of cereal crops: A five-year experiment to develop management guidelines“, AHDB Cereals & Oilseeds [Online]. Available: [Accessed: 13 Dec. 2019].
  9. Godwin, R. (2015) "Precision farming“, INGENIA online, No. 64. [Online]. Available: [Accessed: 13 Dec. 2019].
  10. Han, S., Zhang, Q., Ni, B. and Reid, J. F. (2004) "A guidance directrix approach to vision-based vehicle guidance systems“, Computers and Electronics in Agriculture, Vol. 43, pp. 179-195. ISSN 0168-1699. DOI 10.1016/j.compag.2004.01.007.
  11. Heiniger, R. W. and Meijer, A. J. (2000) "Why variable rate application of lime has increased grower profits and acceptance of precision agriculture in the southeast“, In SO: Proceedings of the 5th International Conference on Precision Agriculture,Bloomington, Minnesota USA,16. - 19. July, 2000. publ 2001; pp. 1-17. Madison, USA: American Society of Agronomy.
  12. Kendall, H. et al. (2017) "Precision Agriculture in China: Exploring Awareness, Understanding, Attitudes and Perceptions of Agricultural Experts and End-Users in China“, Advances in Animal Biosciences: Precision Agriculture (ECPA), Vol. 8, No. 2. p. 703-707. E- ISSN 2040-4719, ISSN 2040-4700. DOI 10.1017/S2040470017001066.
  13. Kingwell, R. (2011) "The whole-farm benefits of controlled traffic farming: An Australian appraisal“, Agricultural systems, Vol. 104, No. 7, pp. 513-521. ISSN 0308521x. DOI 10.1016/j.agsy.2011.04.001.
  14. Kviz, Z., Kroulik, M. and Chyba, J. (2014) "Evaluation of Machinery Guidance Systems Concerning Pass-to-Pass Accuracy as a Tool for More Efficient Plant Production in Fields and Soil Damage Reduction“, Plant, Soil and Environment, Vol. 60, No. 1, pp. 36-42. E-ISSN 1805-9368. DOI 10.17221/622/2012-PSE.
  15. Malik, R. S., Jhorar, B. S. and Dahiya, I. S. (1985) "Influence of seedbed tilth on emergence and root and shoot growth of seedling of some crops“, Experimental Agriculture, Vol. 21, No. 1, pp. 59-65. E-ISSN 1469-4441, ISSN 0014-4797. DOI 10.1017/S0014479700012254.
  16. Marchenko, O. S. (1989) "Optimising soil cultivation and seedbed preparation parameters referring to soilconditions“, Land and Water Use, Proceedings of the 11th International Congress on Agricultural Engineering, Dublin, (Dodd V. A; Grace P. M.), Balkema, Rotterdam, Vol. 2, pp. 1507-1517. ISBN 90 6191 977 0.
  17. Robertson, M., Carberry, P. and Brennan, L. (2008) "Economic benefits of precision agriculture. Case studies from Australian grain farms“, Grain Researd and Development Corporatio, 14 Feb, 2008 [Online]. Available: [Accessed: 10 Nov. 2019].
  18. Scarlett, A. J., Lowec, J. C. and Semple, D. A. (1997) "Precision tillage: in-field, real-time control of seedbed quality“, Precision Agriculture, Proceedings of the 1st European Conference on Precision Agriculture, BIOS Scientific Publishers Ltd, 1997, p. 503 - 510. ISBN-13 978-1859962367.
  19. Sparovek, G. and Schnug, E. (2001) "Soil tillage and precision agriculture - A theoretical case study for soil erosion control in Brazilian sugar cane production“, Soil & Tillage Research, Vol. 61, No. 1-2, p. 47-54. ISSN 0167-1987. DOI 10.1016/S0167-1987(01)00189-1.
  20. Stoll, A. and Kutzbach, H. D. (2000) "Guidance of a forage harvester with GPS“, Precision Agriculture, Vol. 2, No. 3, pp. 281-291. E-ISSN 1573-1618, ISSN 1385-2256. DOI 10.1023/A:1011842907397.
  21. Vogt, S. (2017) "The economics of precision agriculture“, Grain Researd and Development Corporatio, 07 Feb, 2017 [Online]. Available: [Accessed: 10 Nov. 2019].
  22. UZEI (2015) "Dataset FADN", [Online]. Available: UZEI: [Accessed: 20. Feb. 2019].
  23. West, G. H. and Kovacs, K. (2017) "Addressing Groundwater Declines with Precision Agriculture: An Economic Comparison of Monitoring Methods for Variable-Rate Irrigation", Water, Vol. 9, No. 1. ISSN 2073-4441. DOI 10.3390/w9010028.

Full paper

  Full paper (.pdf, 494.52 KB).