Automated Wildlife Recognition

DOI 10.7160/aol.2018.100105
No 1/2018, March
pp. 51-60

Pavlíček, J., Jarolímek, J., Jarolímek, J., Pavlíčková, P., Dvořák, S., Pavlík, J. and Hanzlík, P. (2018) “Automated Wildlife Recognition", AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 1, pp. 51-60. ISSN 1804-1930. DOI 10.7160/aol.2018.100105.


The estimation of wildlife populations is an issue currently being solved at workplaces on many levels. Knowledge of wildlife population and localization is not only very important for reducing damage to agricultural and forest growth, which arises from the local overgrowth of certain animal species, but also for the protection of endangered species of animals and plants. The article presents the results of a research carried out during 2017 as the first partial objective of a complex automated wildlife estimation project, namely the recognition of game in a free landscape without vegetation cover from an UAV (unmanned aerial vehicle). The paper describes a method of finding game animals in a selected area and identifies problems with the recognition of the animals hiding in the vegetation. These results play an important role in solving the overall complex p roblem of automated game recognition.


Wildlife, automated recognition, picture segmentation, neural networks, mimicry, false positive recognition.


  1. Bartoš, L., Kotrba, R. and Pintíř, J. (2010) "Ungulates and their management in the Czech Republic", in: Apollonio, M., Andersen, R. and Putman, R. (eds.) "European Ungulates and their Management in the 21st century", Cambridge University Press, London, UK, pp. 243 - 261. ISBN 978-0-521-76061-4.
  2. Bartoš, L., Kotrba, R., Pluháček, J. and Dušek, A. (2005) "Sčítání zvěře termovizní metodousrovnávací studie publikovaných zkušeností" (in Czech), Research study for Lesy ČR, Prague.
  3. Bayliss, P. and Yeomans, K. M. (1989) "Correcting bias in aerial survey population estimatesof feral livestock in northern Australia using the double-count technique", Journal of Applied Ecology,Vol. 26, pp. 925-933. E-ISSN 1365-2664. DOI 10.2307/2403702.
  4. Eisenbeiss, H. (2011) "The Potential of Unmanned Aerial Vehicles for Mapping". [Online]. Available: [Accessed: 20 Jan. 2018].
  5. Focardi, S., De Marinis, A. M., Rizzotto, M. and Pucci, A. (2001) "Comparative evaluationof thermal infrared imaging and spotlighting to survey wildlife", Wildlife Society Bulletin, Vol. 29,No. 1, pp. 133-139. E-ISSN 1938-5463.
  6. Fuentes, M. M. P. B., Bell, I., Hagihara, R., Hamann, M., Hazel, J., Huth, A., Seminoff, J. A.,Sobtzick, S. and Marsh, H. (2015) "Improving in-water estimates of marine turtle abundanceby adjusting aerial survey counts for perception and availability biases", Journalof Experimental Marine Biology and Ecology, Vol. 471, pp. 77-83. ISSN 0022-0981. DOI 10.1016/j.jembe.2015.05.003.
  7. Garel, M., Bonenfant, C., Hamann, J. L., Klein, F. and Gaillard, J. M. (2010) "Are abundanceindices derived from spotlight counts reliable to monitor red deer Cervus elaphus populations?"Wildlife Biology, Vol. 16, No. 1, pp. 77-84. ISSN 0909-6396. DOI 10.2981/09-022.
  8. Gill, R. M. A., Thomas, M. L. and Stocker, D. (1997) "The use of portable thermal imagingfor estimating deer population density in forest habitats", Journal of Applied Ecology. Vol. 34,pp. 1273-1286. E-ISSN 1365-2664. DOI 10.2307/2405237.
  9. Gonzales, R. C. and Woods, R. E. (2002) „Digital image processing“, 2nd edition.ISBN 9780201180756.
  10. Graves, H. B., Bellis, E. D. and Knuth, W. N. (1972) "Censusing white-tailed deer by irborne thermalinfrared imagery", Journal of Wildlife Management, Vol. 36, No 2, pp. 875-884. E-ISSN 1937-2817. DOI 10.2307/3799443.
  11. Hanzlik, P., Kozisek, F. and Pavlicek, J. (2006) "Decision Support Systems, Intelligent Agent,Knowledge engine, Agricultural DSS" [Online]. Available: [Accessed: 15 Jan. 2018].
  12. Jarolimek, J., Vanek, J., Jezek, M., Masner, J. and Stoces, M. (2014) "The telemetric trackingof wild boar as a tool for field crops damage limitation", Plant, Soil and Environment, Vol. 60,No. 9, pp. 418-425. ISSN 1214-1178.
  13. Liberg, O., Bergström, R., Kindberg, J. and Von Essen, H. (2010) "Ungulates and their managementin Sweden", in: Apollonio, M., Andersen, R. and Putmann, R. eds.: "European Ungulatesand their Management in the 21st century", Cambridge University Press, London, UK, pp. 37-70.ISBN: 978-0-521-76061-4.
  14. Lowe, D. G. (2004) „Distinctive image features from scale-invariant keypoints“, InternationalJournal of Computer Vision, Vol. 60, No. 2, pp. 91-110. E-ISSN 1573-1405, ISSN 0920-5691. DOI 10.1023/B:VISI.0000029664.99615.94.
  15. Lowe, D. G. (1999) „Object recognition from local scale-invariant features“, InternationalConference on Computer Vision, Corfu, Greece, pp. 1150-1157. ISBN 0-7695-0164-8.
  16. Masner, J., Vanek, J. and Stoces, M. (2014) "Spatial Data Monitoring and Mobile Applications– Comparison of Methods for Parsing JSON in Android Operating System", AGRIS on-line Papersin Economics and Informatics, Vol. 6, No. 1, pp. 37-46. ISSN 1804-1930.
  17. Noviyanto, A. and Arymurthy, A. M. (2013) "Beef cattle identification based on muzzle pattern usinga matching refinement technique in the SIFT method", Computers and Electronics in Agriculture,Vol. 99, pp. 77-84. ISSN 0168-1699. DOI 10.1016/j.compag.2013.09.002.
  18. Parker, J. R. (2011) "Algorithms for Image Processing and Computer Vision", Wiley Publishing,Indianapolis. 504 p. ISBN 978-0-470-64385-3.
  19. Pavlickova, P., Hanzlik, P. and Pavlicek, P. (2017) "Feasibility study KZ 13 Baby weeds", Facultyof Economics and Management, Czech University of Agriculture Prague.
  20. Russ, J. C. (2008) „Introduction to Image Processing and Analysis“, 6th Edition.ISBN 978-084937073.
  21. Wiggers, E. P. and Beckerman, S. F. (1993) "Use of thermal infrared sensing to survey white-taileddeer populations", Wildlife Society Bulletin, Vol. 21, pp. 263-268. ISSN 00917648.
  22. Wyatt, C. L., Trivedi, M. and Anderson, D. R. (1980) "Statistical evaluation of remotelysensed thermal data for deer census", Journal of Wildlife Management, Vol. 44, pp. 397-402.E-ISSN1937-2817. DOI 10.2307/3807970.
  23. Yu, X., Wang, J., Kays, R., Jansen, P. A., Wang, T. and Huang, T. (2013) "Automated identificationof animal species in camera trap images", Eurasip Journal on Image and Video Processing, Vol. 52.E-ISSN 1687-5281. DOI 10.1186/1687-5281-2013-52.

Full paper

  Full paper (.pdf, 1.6 MB).