Price Transmission Analysis: the Case of Milk Products in Russia

DOI 10.7160/aol.2018.100102
No 1/2018, March
pp. 15-23

Kharin, S. (2018) “Price Transmission Analysis: the Case of Milk Products in Russia", AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 1, pp. 15-23. ISSN 1804-1930. DOI 10.7160/aol.2018.100102.


This paper investigates vertical price transmission along the milk supply chain in the Russian market using a vector autoregression model. Monthly farm-gate and retail prices were used in the analysis. Using cointegration technique, we find no empirical evidence for cointegration between farm-gate and retail prices. We show that there is bidirectional Granger causality from farm to retail prices and vice versa. However, response of the farm-gate price to a change in retail price is greater and slightly longer than price response of the retail price to a change at the farm level. The results support the assumption that price changes are not transmitted efficiently from one level to another.


Vertical price transmission, market power, cointegration, vector autoregression model, dairy prices, Russia.


  1. Akaike, H. (1973) “Information theory and an extension of the maximum likelihood principle”, in B.N. Petrov and F. Csaki (eds), Proceedings of the 2nd International Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267-281.
  2. Ansah, I. G. K. (2012) “Analyzing the relationship between world market prices and local pricesof food in African markets: the case of wheat in Ethiopia”, MSc Thesis, Wageningen Universityand Research Center, Wageningen.
  3. Banerjee, A., Dolado, J. Galbraith, J.W . and Hendry, D. F. (1993) “Co-Integration, Error-Correction,and the Econometric Analysis of Non-Stationary Data”, Oxford, Oxford University Press. DOI 10.1093/0198288107.001.0001.
  4. Bross, I. D. J. (1971) “Critical levels, statistical language and scientific inference”, In: GodambeVP, Sprott DA, editors. Foundations of statistical inference. Toronto: Holt, Rinehart & Winstonof Canada, Ltd.
  5. Byeong-il Ahn and Lee H. (2015) “Vertical Price Transmission of Perishable Products: The Caseof Fresh Fruits in the Western United States”, Journal of Agricultural and Resource Economics,Vol. 40, No.3, pp. 405-424. ISSN 1068-5502.
  6. Byeong-il, A. and Lee, H. (2013) “Asymmetric transmission between factory and wholesaleprices in fiber board market in Korea”, Journal of Forest Economics, Vol. 19, No.1, pp. 1-14.ISSN 1104-6899. DOI 10.1016/j.jfe.2012.06.008.
  7. Dai J., Li X. and Wang X. (2017) “Food scares and asymmetric price transmission: the caseof the pork market in China”, Studies in Agricultural Economics, Vol. 119, No. 2, pp. 98-106.ISSN 1418-2106. DOI 10.7896/j.1620.
  8. Dickey, D. A., Fuller, W. A. (1979) “Distribution of the estimators for autoregressive time serieswith a Unit Root”, Journal of the American Statistical Association, Vol. 74, pp. 427-431
  9. Elliott, G., Rothenberg, T. J. and Stock, J. H. (1996) “Efficient Tests for an Autoregressive UnitRoot”, Econometrica, Vol. 64, No. 4, pp. 813-836. ISSN 0012-9682. DOI 10.2307/2171846.
  10. Engle, R. F. and Granger, C. W. J. (1987) “Co-Integration and Error Correction: Representation,Estimation, and Testing”, Econometrica, Vol. 55, No. 2, pp. 251-276. ISSN 0012-9682. DOI 10.2307/1913236.
  11. Falkowski, J. (2010) “Price transmission and market power in a transition context: evidencefrom the Polish fluid milk sector”, Post-Communist Economies, Vol. 22, pp. 513-529. DOI 10.1080/14631377.2010.518477.
  12. Fousekis, P., Katrakilidis, C. and Trachanas, E. (2016) “Vertical price transmission in the USbeef sector: Evidence from the nonlinear ARDL model”, Economic Modelling, Vol. 52, Part B,pp.499-506. ISSN 0264-9993. DOI 10.1016/j.econmod.2015.09.030.
  13. Granger, C. W. J. (1969) “Investigating Causal Relations by Econometric Models and Cross-spectralMethods”, Econometrica, Vol. 37, No. 3, pp. 424-438. ISSN 0012-9682. DOI 10.2307/1912791.
  14. Granger, C. W. J. (1980) “Testing for causality: A personal viewpoint”, Journal of EconomicDynamics and Control, Vol. 2, pp. 329-352. ISSN 0165-1889.
  15. Granger, C. W. J. and Lee, T. H. (1989) ”Investigation of production, sales and inventoryrelationships using multicointegration and non-symmetric error correction models”, Journalof Applied Econometrics, Vol. 4, pp. 145-159. ISSN 1099-1255.
  16. Gregory, A. and Hansen, B. (1996) “Residual-based tests for cointegration in models with regimeshifts”, Journal of Econometrics, Vol. 70, pp. 99-126. DOI 10.1016/0304-4076(69)41685-7.
  17. Kharin, S. (2015) “Vertical price transmission along the dairy supply chain in Russia”, Studiesin Agricultural Economics, Vol. 117, No. 2, pp. 80-85. ISSN 1418-2106. DOI 10.7896/j.1517.
  18. Kharin, S., Lajdova, Z. and Bielik, P. (2017) “Price transmission on the Slovak dairy market”, Studiesin Agricultural Economics, Vol. 119, No. 3, pp. 148-155. ISSN 1418-2106. DOI 10.7896/j.1711.
  19. Lajdová, Z. and Bielik, P. (2015) “The evidence of asymmetric price adjustments”,Agricultural Economics–Zemedelská Ekonomika, Vol. 61, No. 3, pp. 105-115. DOI 10.17221/220/2014-AGRICECON.
  20. MacKinnon, J. (1991) “Critical Values for Cointegration Tests”, in R. Engle and C. Granger (eds),Long-Run Economic Relationships, Oxford, Oxford University Press, pp. 267-287.
  21. Phillips, P. C. B. (1987) “Time series regression with a unit root”, Econometrica, Vol. 55, No. 2,pp. 277-301. ISSN 0012-9682.
  22. Phillips, P. C. B. and Perron, P. (1988) “Testing for a Unit Root in Time Series Regression”,Biometrica, Vol. 75, No. 2, pp. 335-346. DOI 10.1093/biomet/75.2.335.
  23. Rajcaniova, M. and Pokrivcak, J. (2013) “Asymmetry in price transmission mechanism: the caseof Slovak potato market”, Review of agricultural and applied economics (RAAE), Vol.16, No.2,pp. 16-23. ISSN 1336-9261.
  24. Rapsomanikis, G., Hallam, D. and Conforti, P. (2003) “Market integration and price transmissionin selected food and cash crop markets of developing countries: review and applications”, FAO,Jan. 2003. [Online]. Available: [Accessed:16 Feb. 2018].
  25. Schwarz, G. (1978) “Estimating the dimension of a model”, The Annals of Statistics, Vol. 6, No. 2,pp. 461-464. ISSN 0090-5364. DOI 10.1214/aos/1176344136.
  26. Schwert, G. W. (1989) “Tests for Unit Roots: A Monte Carlo Investigation”, Journal of Business andEconomic Statistics, Vol. 7, pp. 147-160. ISSN 0735-0015.
  27. Serena, N. and Perron, P. (2001) “Lag Length Selection and the Construction of Unit Root Testswith Good Size and Power”, Econometrica, Vol. 69, No. 6, pp. 1519-1554. ISSN 0012-9682.
  28. Sims, C. (1980) “Macroeconomics and Reality”, Econometrica, Vol. 48, No.1, pp. 1-48.ISSN 0012-9682.
  29. Ning, Z. and Sun, Ch. (2014) “Vertical price transmission in timber and lumber markets”, Journalof Forest Economics, Vol. 20, No. 1, pp. 17-32. ISSN 1104-6899. DOI 10.1016/j.jfe.2013.07.002.
  30. Zivot, E. and Andrews, D. (1992) “Further evidence of the great crash, the oil-price shockand the unit-root hypothesis”, Journal of Business and Economic Statistics, Vol. 10, No. 3,pp. 251-270. ISSN 0735-0015.

Full paper

  Full paper (.pdf, 361.45 KB).