Proposing of Single Entity Design Pattern in Big Agricultural Positioned Data Sets (ADS)

DOI 10.7160/aol.2018.100407
No 4/2018, December
pp. 65-69

Rajtr, J., Šimek, P. and Pavlík, J. (2018) “Proposing of Single Entity Design Pattern in Big Agricultural Positioned Data Sets (ADS)", AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 4, pp. 65-69. ISSN 1804-1930. DOI 10.7160/aol.2018.100407.


With emerging usage of positioned devices such as drones, cell phones or IoT, the amount of data that can be collected expands drastically. At any given time, there is usually at least one nearby device that has positioning capabilities. Smart phones, smart TVs, personal computers, or even cars contain localization features. These vast amounts of data require a lot of effort in analysis and understanding in order to be properly utilized, which is especially true for the field of agriculture, where proper analysis can yield tremendous improvements in terms of production. Current computer technologies offer plenty options for such analysis. However, not every agricultural subject has access to a mainframe with performance in petaflops to perform complicated analyses of such big data in a timely manner. The defined design patterns for creation of data offers potential for speeding up the analysis of ADS on personal computers. This article describes known and used creational patterns and compares their benefits regarding ADS and offers possible usage and improvements.


Big data, agricultural, designing patterns, software engineering.


  1. Dascalu, S., Hao, N. and Debnath, N. (2005) “Design patterns automation with template library”, Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, pp. 699-705. ISBN 0-7803-9313-9. DOI 10.1109/ISSPIT.2005.1577183.
  2. Chen, J., Zhong, Y. and Lam, A. (2018) “Research on Monitoring Platform of Agricultural ProductCirculation Efficiency Supported by Cloud Computing”, Wireless Personal Communicatons,Vol. 102, No. 4, pp. 3573-3587. ISSN 0929-6212. DOI 10.1007/s11277-018-5392-3.
  3. Coble, K. H., Mishra, A. K., Ferrell, S. and Griffin, T. (2018) “Big Data in Agriculture:A Challenge for the Future”, Applied Economics Perspectives and Policy, Vol. 40, No. 1, pp. 79-96.ISSN 2040-5790. DOI 10.1093/aepp/ppx056.
  4. Ferrandez-Pastor, F. J., Garcia-Chamizo, J. M., Nieto-Hidalgo, M. and Mora-Martinez, J.(2018) “Precision Agriculture Design Method Using a Distributed Computing Architectureon Internet of Things Context”, Sensors, Vol. 18, No. 6, Article no. 1731. ISSN 1424-8220. DOI 10.3390/s18061731.
  5. Guardo, E., Di Stefano, A., La Corte, A., Sapienza, M. and Scata, M. (2018) “A Fog ComputingbasedIoT Framework for Precision Agriculture”, Journal of Internet Technology, Vol. 19, No. 5,pp. 1401-1411. ISSN 1607-9264. DOI 10.3966/160792642018091905012.
  6. Guerrero, J. I., Garcia, A., Personal, E., Luque, J. and León, C. (2017) “Heterogeneous data sourceintegration for smart grid ecosystems based on metadata mining”, Expert Systems with Applications,Vol. 79, pp. 254-268. ISSN 0957-4174. DOI 10.1016/j.eswa.2017.03.007.
  7. Huang, Y., Chen, Z. X., Yu, T., Huang, X. Z and Gu, X. F. (2018) “Agricultural remote sensingbig data: Management and applications“, Journal of Integrative Agriculture, Vol. 17, No. 9,pp. 1915-1931. ISSN 2095-3119. DOI 10.1016/S2095-3119(17)61859-8.
  8. Mangalaraj, G., Nerur, S., Mahapatra, R. and Price, K. H. (2014) “Distributed Cognitionin Software Design: An Experimental Investigation of the Role of Design Patternsand Collaboration”, MIS Quarterly: Distributed Cognition in Software Design: An ExperimentalInvestigation of the Role of Design Patterns and Collaboration, Vol. 38, No. 1, pp. 249-274,ISSN 0276-7783. DOI 10.25300/MISQ/2014/38.1.12.
  9. Papadimitriou, CH. and Yannakakis, M. (1999) “On the Complexity of Database Queries”,Journal of Computer and System Sciences, Vol. 58, No. 3, pp. 407-427. ISSN 0022-0000. DOI 10.1006/jcss.1999.1626.
  10. Pavlič, M., Kaluza, M. and Vrček, N. (2008) “Database Complexity Measuring Method”, Proceedingsof the 19th Central European Conference on Information and Intelligent Systems, pp. 577-583.ISBN 978-953-6071-04-3.
  11. Roumelis, G. Vassilakopoulos, M. Corral, A. and Manolopoulos, Y. (2017) “Efficient queryprocessing on large spatial databases: A performance study”, Journal of Systems and Software,Vol. 132, pp. 165-185. ISSN 0164-1212. DOI 10.1016/j.jss.2017.07.005.
  12. Singh, A., Garg, S., Batra, S., Kumar, N. and Rodrigues, J. J. P. C. (2018) “Bloom filter basedoptimization scheme for massive data handling in IoT environment”, Future Generation ComputerSystems, Vol. 82, pp. 440-449. ISSN 0167-739X. DOI 10.1016/j.future.2017.12.016.
  13. Stoces, M., Masner, J., Kanska, E. and Jarolimek J. (2018) "Processing of Big Data in Internetof Things and Precision Agriculture", Agrarian Perspectives XXVII.: Food Safety - Food Security,Proceedings of the 27th International Scientific Conference, pp. 353-358. ISBN 978-80-213-2890-7,ISSN 1213-7979.
  14. Zhou, X. L. and Li, D. Y. (2018) “Quantifying multi-dimensional attributes of human activitiesat various geographic scales based on smartphone tracking”, International Journal of HealthGeographics, Vol. 17, Article no. 11. ISSN 1476-072X. DOI 10.1186/s12942-018-0130-3.
  15. Zhu, H. J. and Zhu, L. H. (2018) “Real-time positioning of a specific object in the big dataenvironment”, EURASIP Journal on Wireless Communications and Networking, Article no. 43.ISSN 1687-1499. DOI 10.1186/s13638-018-1043-3.

Full paper

  Full paper (.pdf, 347.85 KB).