Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction


No 4/2015, December
pp. 151-160

Sudha, M. and Valarmathi, B. (2015) “Impact of Hybrid Intelligent Computing in Identifying Constructive Weather Parameters for Modeling Effective Rainfall Prediction”, AGRIS on-line Papers in Economics and Informatics, Vol. 7, No. 4, pp. 151 - 160. ISSN 1804-1930.

Abstract

Uncertain atmosphere is a prevalent factor affecting the existing prediction approaches. Rough set and fuzzy set theories as proposed by Pawlak and Zadeh have become an effective tool for handling vagueness and fuzziness in the real world scenarios. This research work describes the impact of Hybrid Intelligent System (HIS) for strategic decision support in meteorology. In this research a novel exhaustive search based Rough set reduct Selection using Genetic Algorithm (RSGA) is introduced to identify the significant input feature subset. The proposed model could identify the most effective weather parameters efficiently than other existing input techniques. In the model evaluation phase two adaptive techniques were constructed and investigated. The proposed Artificial Neural Network based on Back Propagation learning (ANN-BP) and Adaptive Neuro Fuzzy Inference System (ANFIS) was compared with existing Fuzzy Unordered Rule Induction Algorithm (FURIA), Structural Learning Algorithm on Vague Environment (SLAVE) and Particle Swarm OPtimization (PSO). The proposed rainfall prediction models outperformed when trained with the input generated using RSGA. A meticulous comparison of the performance indicates ANN-BP model as a suitable HIS for effective rainfall prediction. The ANN-BP achieved 97.46% accuracy with a nominal misclassification rate of 0.0254 %.

Keywords

Rainfall prediction modeling, hybrid computing; rough set, optimal feature reduction, artificial neural network, fuzzy inference algorithm and accuracy.

References

  1. Bardossy, A., Duckstein, L., Bogardi, I. Fuzzy rule based classification of atmospheric circulation patterns". International Journal of Climatology. 1995, Vol. 15, p. 1087-1097. ISSN 1097-0088. DOI 10.1002/joc.3370151003.
  2. Chen, S. M., Wang, Y. M., Tsou, I. Using artificial neural network approach for modelling rainfallrunoff due to typhoon. Journal of Earth System Science. 2013, Vol. 122, No. 2, p. 399-405. ISSN 0253-4126. DOI 10.1007/s12040-013-0289-8.
  3. Coulibaly, P., Anctil, F., Bobee, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, Journal of Hydrology. 2000, Vol. 230, p. 244–257. ISSN 0022-1694. DOI 10.1016/S0022-1694(00)00214-6.
  4. Dai, J., Xu, Q. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification, Applied Soft Computing. 2013, Vol. 13, p. 211-221. ISSN 1568-4946. DOI 10.1016/j.asoc.2012.07.029.
  5. Fdez, J. A., Sanchez, L., Garcia, S., Del-Jesus, M. J., Ventura, S., Garrell, J. M. , Otero, J., Romero, C., Bacardit, J., Fernandez, J. C., Herrera, F. KEEL: a software tool to assess evolutionary algorithms for data mining problems. Computing. 2008. [Online] Available: http://link.springer.com/article/10.1007%2Fs00500-008-0323-y#page-2 [Accessed March 20, 2015].
  6. Flood, I., Kartam, N. Neural Networks in Civil Engineering I: Principles and Understanding. Journal of Computing in Civil Engineering. 1994, Vol. 8, No. 2, p. 131-148. ISSN 0887-3801. DOI 10.1061/(ASCE)0887-3801(1994)8:2(131).
  7. Gonzalez, A., Perez, R. Selection of Relevant Features in a Fuzzy Genetic Learning Algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2001, Vol. 31, No. 3. ISSN 1083-4419. DOI 10.1109/3477.931534.
  8. Hayati, M., Mohebi, Z. Application of artificial neural networks for temperature forecasting, World Academy of Science, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2007, Vol. 1, No. 4. E-ISSN 2077-1231, ISSN 2227-2739.
  9. Haykin, S., Neural Networks A Comprehensive Foundation, eight ed., Pearson Prentice Hall, India. 2009. ISSN 2010-3778.
  10. Hung, N. Q , Babel, M. S. , Weesakul, S., Tripathi, N. K. An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrology Earth System Science. 2009, Vol. 13, p. 1413–1425. ISSN 1027-5606. DOI 10.5194/hess-13-1413-2009.
  11. Huhn, J., Hullermeier, E. FURIA: An algorithm for unordered fuzzy rule induction, data mining and knowledge discovery. 2009, Vol. 19, No. 3, p. 293-319. ISSN 1384-5810. DOI 10.1007/s10618-009-0131-8.
  12. Ishibuchi, H., Nakashima,T. Effect of rule weights in fuzzy rule based classification systems, IEEE Transactions on Fuzzy Systems. 2001, Vol. 9, p. 506–515. ISSN 1524-9050. DOI 10.1109/91.940964.
  13. Ju, Q., Yu, Z., Hao, Z., Gengxin, O., Zhao, J., Liu, D. Division based rainfall runoff simulations with BP neural networks and Xinanjiang model, Neuro Computing. 2009, Vol. 72, No. 13, p. 2873–2883. ISSN 0925-2312. DOI 10.1016/j.neucom.2008.12.032.
  14. Kalteh, A. M. Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding. Caspian Journal of Environmental Sciences. 2008, Vol. 6, No. 1, p. 53-58. ISSN: 1735-3033.
  15. Lee, L. W., Wang, L., Chen, S. M.,Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms. 2007. DOI 10.1016/j.eswa.2006.05.015.
  16. Li, K., Liu, Y. S. A rough set based fuzzy neural network algorithm for weather prediction, Proceedings of International Conference on Machine Learning and Cybernetics. 2005, Vol. 3, p. 1888-1892.
  17. Machado, F., Mine, M. Kaviski, E., Fill, H. Monthly rainfall-runoff modelling using artificial neural networks. Hydrological Sciences Journal. 2011, Vol. 56, No. 3, p. 349-361. ISSN 0262-6667. DOI 10.1080/02626667.2011.559949.
  18. Nikza, P., Latif, A. M. Rainfall events evaluation using adaptive neural-fuzzy inference system, Int. Jr. Information Technology and Computer Science, 2014, Vol. 6, No. 2, p. 46-51. ISSN 2319-9016. DOI 10.5815/ijitcs.2014.09.06.
  19. Olaiya, F., Adeyemo, A. B. Application of Data Mining Techniques in Weather Prediction and Climate Change Studies, I. J. Information Engineering and Electronic Business, 2012, Vol. 1, p. 51-59. ISSN: 2074-9031. DOI 10.5815/ijieeb.2012.01.07.
  20. Pawlak, Z., Skowron, A. Rough sets, some extensions, Information Sciences. 2007, Vol. 177, No. 1., p. 28–40. ISSN: 0020-0255. DOI 10.1016/j.ins.2006.06.006.
  21. Pawlak, Z. Rough Sets and its Applications, Journal of Telecommunications and Information Technology, 2002, p. 7-10. ISSN: 1899-8852.
  22. Pawlak, Z . Rough sets, Int. Jr. of Computer and Information Sciences. 1982, p. 341-356, ISSN 2074-9058. DOI 10.1007/BF01001956.
  23. Pradhan, B., Lee, S. Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environmental Modelling and Software. 2010, Vol. 25, p. 747–759. ISSN 1364-8152. DOI 10.1016/j.envsoft.2009.10.016.
  24. Raza, M. Q., Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings, Renewable and Sustainable Energy Reviews. 2015, Vol. 50, p. 1352–1372. ISSN 1364-0321. DOI 10.1016/j.rser.2015.04.065.
  25. Sudha, M., Valarmathi, B. Rainfall forecast analysis using rough set attribute reduction and data mining methods, Agris Online Papers in Economics and Informatics. 2014, Vol. 6, No. 4, p. 145-154. ISSN 1804-1930.
  26. Sudha, M., Valarmathi, B. Exploration on feature selection based on rough set approach, International Journal of Applied Engineering Research. 2014, Vol. 8, p. 1555-1568. ISSN 0973-4562.
  27. Suguna, N., Thanushkodi, K. G. An Independent Rough Set Approach Hybrid with Artificial Bee Colony Algorithm for Dimensionality Reduction, American Journal of Applied Sciences. 2011, Vol. 8, No. 3, p. 261-266. ISSN 1546-9239. DOI 10.3844/ajassp.2011.261.266.
  28. Shen, Q., Jensen, R. Rough Sets, Their Extensions and Applications, International Journal of Automation and Computing, January.2007, Vol. 4, No. 3, p. 217-228. ISSN 1751-8520. DOI 10.1007/s11633-007-0217-y.
  29. Santosh, B. S., Kadar, Sh. I. An efficient weather forecasting system using artificial neural network, International Journal of Environmental Science and Development, 2010, Vol. 1, No. 4, p. 321 - 326. ISSN: 2010-0264. DOI 10.7763/IJESD.2010.V1.63.
  30. Srinivasulu, S., Jain, A. A comparative analysis of training methods for artificial neural network rainfall runoff models, Applied Soft Computing, 2006, Vol. 6, p. 295–306. ISSN 1569-4946. DOI 10.1016/j.asoc.2005.02.002.
  31. Sohail, A., Watanabe, K., Takeuchi, S. Stream flow forecasting by artificial neural network (ANN) model trained by real coded genetic algorithm (GA), Journal of Groundwater Hydrology, Japan. 2006, Vol.48, No. 4, p. 233–262. ISSN 0022-1694. DOI 10.5917/jagh1987.48.233.
  32. Solaimani, K. Rainfall runoff prediction based on artificial neural network (A Case Study: Jarahi Watershed). American-Eurasian Journal of Agricultural and Environmental Sciences, 2009, Vol. 5, No. 6, p. 856-865. ISSN 1990-4053.
  33. Tokar, S. A., Johnson, P. A. Rainfall-Runoff modelling using Artificial Neural Networks. Journal of Hydrologic Engineering.1999, Vol. 4, No. 3, p. 232-239. ISSN 0022-1694. DOI 10.1061/(ASCE)1084-0699(1999)4:3(232).
  34. Witten, I. H., Frank, E. Data mining: practical machine learning tools and techniques, 2nd ed. Morgan Kaufmann, San Francisco. 2005, p.525. [Online] Available: http://www.cs.waikato.ac.nz/ml/weka/index. html. [Accessible: 10 February 2015].
  35. Wong, K. W., Wong, P. M., Gedeon, T. D., Fung, C. C. Rainfall Prediction Model Using Soft Computing Technique. Soft Computing, A Fusion of Foundations, Methodologies and Applications, Springer. 2003, Vol. 7, No. 6, p. 434-438. ISSN 1433-7479. DOI 10.1007/s00500-002-0232-4.
  36. Yao, Y., Zhao, Y. Discernibility matrix simplification for constructing attribute reducts, Information Sciences, Elseveir. 2009, Vol. 179, No. 5, p. 867-882. ISSN 0020-0255. DOI 10.1016/j.ins.2008.11.020.
  37. Zadeh, L. A., The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems.1983, Vol. 11, p. 199-227. ISSN 0165-0114. DOI 10.1016/S0165-0114(83)80081-5.

Full paper

  Full paper (.pdf, 923.68 KB).