Evaluation of Elements Uptake in Soil and Different Plants


No 1/2015, March
pp. 81-88

Várallyai L., Kovács B. (2015) "Evaluation of Elements Uptake in Soil and Different Plants“, AGRIS on-line Papers in Economics and Informatics, Vol. 7, No. 1, pp. 81 – 88. ISSN 1804-1930

Abstract

The applied informatics undergone a significant development at the end of XXth century, which is allowed analyzing of soil pollution by computer controlled system. On account of opening of the pollution we can process the experimental data fast and exactly so we can get such a large number of new information. The environmental pollutant affect of the molybdenum was studied by elements load experiment in Nagyhörcsök Experimental Station. The relation was analyzed between the uptake of molybdenum and other micro-elements and its effect on plant organs (loaf, seed) using by different statistical methods. The aim of our investigations to search for answers on how to arable crops respond to a possible soil contamination. It is also important to determine the extent of mobilized elements from the soil into the plants, which type of effect on them, and how leach the harmful substances into deeper layers (groundwater). A computer programme based on Visual C# was developed to process of the large amount of data. The MySQL was applied to prepare the database, since we want to allow access to the newly developed database via internet technology. The data was filled up to the data tables mainly from the Excel tables. Data in internet-based databases must be properly protected. The program can provide access for two types of users at present: the database administrator who is authorised to do everything in connection with the database, and the user who is authorised to make queries only.

Keywords

Multidisciplinary science, micro-elements, pollution, molybdenum, food chain, data-processing, Hungary.

References

  1. Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., Lima, A. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Science of The Total Environment. 2014, Vol. 500-501, p. 11-22. ISSN: 0048-9697. DOI https://doi.org/10.1016/j.scitotenv.2014.08.085.
  2. Alloway, B. Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability, Third Edition. Springer. 2012, p. 525. ISBN 978-94-007-4469-1.
  3. Anke, M. Molybdenum - An essential and toxic element in the nutrition and environment of plants, animals and human beings. In: Szilágyi M., Szentmihályi K. (szerk): Trace elements in the food chain proceedings, International Symposium on Trace Element in the Food Chain, Budapest. 2006, p. 357-361. ISBN: 963-7067-132.
  4. Automate Microsoft Excel with Visual Studio 2010 [Online] Available: http://visualstudiomagazine.com/articles/2011/06/20/wcovb_automate-excel.aspx [ Accessed: 25 June 2014]
  5. Bramryd, T. Long-term effects of sewage sludge application on the heavy metal concentrations in acid pine (Pinus sylvestris L.) forests in a climatic gradient in Sweden. Forest Ecology and Management. 2013, Vol. 289, No. 1, p. 434-444. ISSN: 0378-1127. DOI https://doi.org/10.1016/j.foreco.2012.08.045.
  6. Brännval, E., Nilsson, M., Sjöblom, R., Skoglund, N., Kumpiene J. Effect of residue combinations on plant uptake of nutrients and potentially toxic elements. Journal of Environmental Management. 2014, Vol.132, p. 287-295. ISSN: 0301-4797. DOI https://doi.org/10.1016/j.jenvman.2013.11.024.
  7. Excel macros. [Online] Available: http://www.excel-easy.com/vba.html [Accessed: 20 March 2012].
  8. Filep, T., Rékási, M. Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma. 2011, Vol. 162, p. 312-318. ISSN: 0016-7061. DOI https://doi.org/10.1016/j.geoderma.2011.03.002.
  9. Heljsberg, A., Torgersen, M., Wiltamuth, S., Golde, P. C# programming language Fourth Edition, Boston, Addison-Wesley. 2010, p. 844. ISBN: 978-0-321-74176-9.
  10. Hu, Y., Callebert, P., Vandemoortel, I.,Nguyen, L., Audenaert, D., Verschraegen, L., Vandenbussche, F., Van Der Straeten D. TR-DB: An open-access database of compounds affecting the ethyleneinduced triple response in Arabidopsis. Plant Physiology and Biochemistry. 2014, Vol. 75, p. 128-137. DOI doi.org/10.1016/j.plaphy.2013.12.008.
  11. Jan, J., Borovec, J., Kopáček, J., Hejzlar J. What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments? Water Resource. 2013, 47, No. 2, p. 547–557. ISSN: 0097-8078. DOI https://doi.org/10.1016/j.watres.2012.10.053.
  12. Kádár, I. A talaj–növény–állat–ember tápláléklánc szennyeződése kémiai elemekkel Magyarországon. Környezetvédelmi és Területfejlesztési Minisztérium - MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. 1995. ISBN: 963-04-5362-2.
  13. Kovács, B., Prokisch, J., Győri, Z., Palencsar, A. J. Studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Communications in Soil Science and Plant Analyses. 2000, 31, p. 1949–1963. ISSN: 0010-3624. DOI https://doi.org/10.1080/00103620009370553.
  14. Kirby, J.K., McLaughlin, M.J., Ma, Y., Ajiboye B. Aging effects on molybdate lability in soils. Chemosphere. 2012, 89, No. 7, p. 876-883. ISSN: 0045-6535. DOI https://doi.org/10.1016/j.chemosphere.2012.05.013.
  15. Lakanen, E., Erviö, R. A comparison of eight extractants for the determination of plant available micronutrients in soil. Acta Agralia Fennica. 1971, 123, p. 223-232. ISSN: 0039-5595.
  16. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu. J., Wang, F., Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Science of the Total Environment. 2013, Vol. 463-464, p. 530–540. ISSN: 0048-9697. DOI https://doi.org/10.1016/j.scitotenv.2013.06.064.
  17. Månsson, N., Bergbäck, B., Sörme L. Phasing out cadmium, lead, and mercury. Effects on urbanstocks and flows. Journal of Industrial Ecology. 2012, 13, p. 94–111. ISSN: 1530-9290. DOI https://doi.org/10.1111/j.1530-9290.2008.00085.x.
  18. Marschner (Ed.), Marschner's Mineral Nutrition of Higher Plants (third ed.). Academic press/Elsevier Ltd. 2012, p. 651. ISBN: 978-0-12-384905-2.
  19. MySQL™-database. [Online] Available: http://www.mysql.com [Accessed: 07 Sept 2014].
  20. Németh, T., Kádár, I. Leaching of Microelement Contaminants: a Long-term Field Study. Z. Naturforsch. 2005, 60c, p. 260-264. ISSN 0939-5075. DOI https://doi.org/10.1515/znc-2005-3-410.
  21. O'Sullivan, J. E., Watson, R. J., Butler, E. C. V. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration. Talanta. 2013, Vol. 115, p. 999-1010. ISSN: 0039-9140. DOI https://doi.org/10.1016/j.talanta.2013.06.054.
  22. Pais, I. The problematic of essentiality of trace elements. In: Pais I. (ed.): New result in the research of hardly known trace elements and their importance in the international geosphere-biosphere programme. Proceedings of the 4th international symposium, University of Horticulture and food industry. 1990, Budapest p. 191-204.
  23. Patócs, I. Occurrence of heavy metals, toxic elements in the soils of Hungary. In: Pais I. (ed.): New result in the research of hardly known trace elements and their importance in the international geosphere-biosphere programme. 1990, Proceedings of the 4. international symposium, University of Horticulture and food industry Budapest. p. 19-30.
  24. Raguža, V., Jarsjöb, J., Grolandera, S., Lindborgb, R., Avilaa R. Plant uptake of elements in soil and pore water: Field observations versus model assumptions. Journal of Environmental Management. 2013, Vol. 126, p. 147-156. ISSN: 0301-4797. DOI https://doi.org/10.1016/j.jenvman.2013.03.055.
  25. Ráthonyi, G., Várallyai, L., Kovács, B. Molybdenum investigation in the food-chain by statistical method. Acta Agraria Kaposváriensis. 2010, Vol.14, No. 3, p. 323-333. ISSN: 1418-1789.
  26. Rékási, M., Filep, T. Fractions and background concentrations of potentially toxic elements in Hungarian surface soils. Environmental Monitoring and Assessment. 2012, Vol. 184, p. 532-542. ISSN: 0167-6369. DOI https://doi.org/10.1007/s10661-011-2513-9.
  27. Rodrigues, S.M., Pereira, M.E., Duarte, A.C., Römkens P.F.A.M. Derivation of soil to plant transfer functions for metals and metalloids: impact of contaminant’s availability. Plant and Soil. 2012, Vol. 361, p. 329–341. ISSN: 1573-5036. DOI https://doi.org/10.1007/s11104-012-1249-9.
  28. Rodrigues, S. M., Pereira, M. E., Duarte, A. C., Römkens P. F. A. M. Soil–plant–animal transfer models to improve soil protection guidelines: a case study from Portugal. Environment International. 2012, Vol. 39, p. 27–37. ISSN: 0160-4120. DOI https://doi.org/10.1016/j.envint.2011.09.005.
  29. Tuya, J., Cabal, M. J. S., de la Riva, C. Mutating database queries. Information and Software Technology. 2007, Vol. 49, No. 4, p. 398-4717. DOI doi.org/10.1016/j.infsof.2006.06.009.
  30. Visual Studio 2010. [Online] Available: http://www.visualstudio.com [Accessed: 12 May 2014].

Full paper

  Full paper (.pdf, 844.83 KB).