Concept of Horticulture Ambient Intelligence System

No 4/2015, December
pp. 209-216

Vasilenko, A. and Ulman, M. (2015) “Concept of Horticulture Ambient Intelligence System”, AGRIS on-line Papers in Economics and Informatics, Vol. 7, No. 4, pp. 209 - 216, ISSN 1804-1930.


In the context of climate changes, there are predictions about the lack of rainfall and water to satisfy the needs of population and farmers. The sustainability of these resources determines watering efficiency in agricultural and horticultural activities. These activities include irrigation and watering. There is scope for the application of intelligent systems for the sustainable management of water resources.


Water, rainfall, irrigation, water resource management, sustainable, horticulture.


  1. Abelló, A., Romero, O. Encyclopedia of Database Systems. Ling L., Özsu, T. M. USA: Springer US, On-Line Analytical Processing. 2008, p. 1949-1954. ISBN 978-0-387-35544-3.
  2. Augustro, J. C., Past, Present and Future of Ambient Intelligence and Smart Environments. In ICAART 2009, Springer CCIS. Berlin: Springer. 2010, Vol. 67, p. 3-15.
  3. Augusto, J. C., Nakashima, H., Aghajan, H. Ambient Intelligence and Smart Environments: A state of the art. In H. Nakashima et al. (eds.), Handbook of Ambient Intelligence and Smart Environments, Springer Science + Business Media, LLC 2010. DOI 10.1007/978-0-387-93808-0.
  4. Cancela, J. J., Fandiño, M., Rey, B. J., Martínez, E. M., Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía), Agricultural Water Management. 31 March 2015, Vol. 151, p. 52-63. ISSN 0378-3774. DOI 10.1016/j.agwat.2014.10.020.
  5. Cook, D. J., Augusto, J. C., Jakkula, V. R. Ambient intelligence: Technologies, applications and opportunities, Pervasive and Mobile Computing. 2009, Vol. 5, p. 277-298. ISSN 1574-1192. DOI 10.1016/j.pmcj.2009.04.001.
  6. Cook, D. J., Das, S. K. How smart are our environments? An updated look at the state of the art. Pervasive and Mobile Computing. 2007, Vol. 3, No. 2, p. 53-73. ISSN 1574-1192. DOI 10.1016/j.pmcj.2006.12.001.
  7. Deveci, O., Onkol, M., Unver, H. O., Ozturk, Z., Design and development of a low-cost solar powered drip irrigation system using Systems Modeling Language, Journal of Cleaner Production. 1 September 2015, Vol.102, p. 529-544. ISSN 0959-6526. DOI 10.1016/j.jclepro.2015.04.124.
  8. García-Mateos, G., Hernández-Hernández, J. L., Escarabajal-Henarejos, D., Jaén-Terrones, S., Molina-Martínez, J. M., Study and comparison of color models for automatic image analysis in irrigation management applications, Agricultural Water Management. 31 March 2015, Vol. 151, p. 158-166. ISSN 0378-3774. DOI 10.1016/j.agwat.2014.08.010.
  9. Giusti, E., Marsili-Libelli, S. A Fuzzy Decision Support System for irrigation and water conservation in agriculture, Environmental Modelling & Software January 2015, Vol. 63, p. 73-86. ISSN 1364-8152. DOI 10.1016/j.envsoft.2014.09.020.
  10. Hayashi, A., Akimoto, K., Tomoda, T., Kii, M. Global evaluation of the effects of agriculture and water management adaptations on the water-stressed population, Mitigation and Adaptation Strategies for Global Change. June 2013, Vol. 18, No. 5, p. 591-618. ISSN 1573-1596. DOI 10.1007/s11027-012-9377-3.
  11. Li, W., Niu, Z., Huang, N., Wang, C., Gao, S., Wu, C. Airborne LiDAR technique for estimating biomass components of maize: A case study in Zhangye City, Northwest China, Ecological Indicators. October 2015, Vol. 57, p. 486-496. ISSN 1470-160X. DOI 10.1016/j.ecolind.2015.04.016.
  12. Sudha, M. N., Valarmathi, M. L., Babu, A. S. Energy efficient data transmission in automatic irrigation system using wireless sensor networks, Computers and Electronics in Agriculture. September 2011, Vol. 78, No. 2, p. 215-221. ISSN 0168-1699. DOI 10.1016/j.compag.2011.07.009.
  13. O'Shaughnessy, S., A., Evett, S. R., Colaizzi, P. D., Howell, T. A. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum, Agricultural Water Management. May 2012, Vol. 107, p. 122-132. ISSN 0378-3774. DOI 10.1016/j.agwat.2012.01.018.
  14. Pereira, L. S. Higher performance through combined improvements in irrigation methods and scheduling: a discussion, Agricultural Water Management, May 1999, Vol. 40, No. 2–3, p. 153-169. ISSN 0378-3774.
  15. Romero, R., Muriel, J. L., García, I., Muñoz de la Peña, D. Research on automatic irrigation control: State of the art and recent results, Agricultural Water Management. November 2012, Vol. 114, p. 59-66, ISSN 0378-3774. DOI 10.1016/j.agwat.2012.06.026.
  16. Vera-Repullo, J. A., Ruiz-Peñalver, L., Jiménez-Buendía, M., Rosillo, J. J., Molina-Martínez, J. M. Software for the automatic control of irrigation using weighing-drainage lysimeters, Agricultural Water Management. 31 March 2015, Vol. 151, p. 4-12. ISSN 0378-3774. DOI 10.1016/j.agwat.2014.10.021.
  17. Verzijlbergh, R. A., Heijnen, P. W., de Roode, S. R., Los, A., Jonker, H. J. J. Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications, Solar Energy. August 2015, Vol. 118, p. 634-645. ISSN 0038-092X. DOI 10.1016/j.solener.2015.06.005.
  18. Yavuz, D., Seymen, M., Yavuz, N., Türkmen, O. Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions, Agricultural Water Management. September 2015, Vol. 159, p. 290-298. ISSN 0378-3774. DOI 10.1016/j.agwat.2015.06.025.
  19. Yu, W., Ryo, K., Katsuhiko, K., Li, L., Hirokazu, F. A Computer Program for Automatic Watering Based on Potential Evapotranspiration by Penman Method and Predicted Leaf Area in Miniature Pot Rose Production, Agricultural Sciences in China. March 2010, Vol. 9, No. 3, p. 370-377. ISSN 1671-2927. DOI 10.1016/S1671-2927(09)60106-1.

Full paper

  Full paper (.pdf, 796.06 KB).