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Abstract
Olive-growing plays an important role in Southern Italy’s agricultural sector. However, the profitability  
of many olive growing farms depends, still today, on public subsidies. The current changes in the European 
Common Agricultural Policy (CAP) 2014-2020, oriented towards the direct payments decreasing,  
will inevitably have important effects on farmer incomes. This is why the olive farms will have to increase 
their level of direct profitability to ensure their resilience on the market. Therefore, the measurement  
of technical efficiency plays a crucial role in identifying more efficient management practices, and for this 
aim, Data Envelopment Analysis (DEA) represents the most widely used technique in productivity analysis.

In this paper, constant returns to scale and variable returns to scale input-oriented models were used  
to investigate the technical and scale efficiency of intensive and traditional olive farms in Southern Italy,  
in order to highlight the performance of each farm.

Results showed technical inefficiencies in both olive systems and, suggesting that improvements in the input 
allocation among all farms are needed. Findings could be useful to suggest the adoption of management 
strategies to optimize the use of inputs, aiming to achieve suitable levels of productive performance.
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Introduction
According to FAOSTAT (2016), the worldwide 
cultivation of olive trees accounts more than 
10.6 million of hectares, in respect to which Italy 
weights about 11%, keeping itself the second 
most important producing country of olives,  
after Spain (with about 24%). Olive growing plays 
a significant role in Italy’s agricultural economy, 
indeed, in the national agricultural context, 
olive farms present high incidence, representing  
about 56% of the total number of Italian farms 
(ISTAT, 2010). In economic terms, the average 
value of Gross Saleable Production (GSP)  
of the olive farms amount to 1.7 million of euros, 
corresponding to about 3% of the national GSP  
of the agricultural sector. Relating to the southern 
Italian regions, this incidence grows to 10% 
(Scardera and Tosco, 2010); in particular olive-
growing is mainly widespread in Apulia, Calabria, 
and Sicily, which overall account for about 73% 

of the national olive oil production (ISTAT, 2016). 
Furthermore, it is noteworthy that olive-growing is 
able to provide a multifarious range of functions, 
besides the merely productive one, as for example 
ecosystem services, support for rural development, 
and guarantees of food safety (De Luca et al., 
2018a, 2018b). 

In Calabria region, olive cultivation systems are 
variegated, due to the co-existence of traditional 
and intensive orchards with low and high-density 
planting, respectively (Bernardi et al., 2018a; 
Stillitano et al., 2017, 2018). Traditional systems, 
that are mainly developed in hilly and mountainous 
areas, are characterized by low levels of adaptation, 
conversion, and mechanisation, often entailing a not 
economically viable crop management (Bernardi  
et al., 2016); on the contrary, the intensive systems 
are represented by higher yields (both of fruits  
and oil obtained), as well as higher levels  
of mechanization that result in high-quality 
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olive oil production, and better levels of farm 
income (Giametta and Bernardi, 2010). Thus,  
in an increasingly competitive olive oil market, 
where the estimated global demand for extra virgin 
olive oil is steadily growing, modern intensive olive 
groves can represent an innovative and economically 
viable opportunity for farmers (Bernardi et al., 
2018b; Sola-Guirado et al., 2018). Nevertheless, 
since the profitability of many Mediterranean olive 
farms depends, even now, on public subsidies, 
both reduction in direct payments and internal 
convergence processes implemented by Common 
Agricultural Policy (CAP) 2014-2020 reform 
will entail the decrease in direct support received  
by farmers, and consequently negative effect  
on their incomes. This is why the olive farms will 
have to increase their level of direct profitability 
to ensure their resilience on the market. In order 
to do so, a more efficient use of existing resources 
should be reached. In this context, technical 
efficiency of olive farms understood as the ability 
of an entrepreneur to maximize outputs given  
a certain combination of inputs or to minimize 
inputs given a certain level of outputs, need  
to increase. Data Envelopment Analysis (DEA), 
proposed by Charnes, Cooper, and Rhodes in 1978, 
has turned out to be the most widely used method  
in technical efficiency measurement. This 
paper deals with the analysis of technical, pure 
technical and scale efficiency of intensive and 
traditional olive farms in Calabria region (Southern 
Italy), in order to highlight their inefficiencies  
in the allocation of resources and thus identifying 
managerial improvement strategies which,  
if adopted by Calabrian farms, could represent  
a key element for their survival in the market.

Theoretical background

DEA is a non-parametric linear-programming-
based method developed by Charnes et al. (1978) 
and based on Farrell’s (1957) efficiency definition. 
It represents the most widely used procedure  
in estimating the technical efficiency of decision-
making units (DMUs), which convert multiple 
inputs into multiple outputs. As observed by Joro 
and Korhonen (2015), DMUs, which may include 
firms or parts of firms, must be comparable,  
i.e., they must perform essentially the same task 
using similar inputs to produce similar outputs, 
operating in similar environmental conditions. 
Technical efficiency consists in the ability of a DMU 
to maximize outputs given the same level of inputs 
and technology or to minimize inputs given a same 
level of outputs. In this sense, technical efficiency 
analysis can be oriented towards two different 
way: increasing output (output-oriented approach)  

or reducing input (input-oriented approach). 

DEA allows the construction of a “best practice” 
frontier on which the efficient DMUs are located  
and that are used to measure the relative 
enefficiency of remaining inefficient units  
in terms of their distance from the frontier. For each  
inefficient DMU, DEA identifies the reference 
units or reference set by projecting it radially  
onto the efficient frontier. Thus, the reference set 
is used to benchmark these inefficiencies. When 
inefficient DMU is projected onto the frontier, 
its input/output are improved and, then, it can 
achieve its target values becoming efficient (Joro  
and Korhonen, 2015; Ozcan et al., 2014).

The most popular DEA approaches in scientific 
literature are the CCR (Charnes, Cooper,  
and Rhodes) model by Charnes et al. (1978)  
under the assumption of constant returns to scale  
(CRS) and, the BCC (Banker, Charnes,  
and Cooper) model by Banker et al. (1984) where 
variable returns to scale (VRS) are assumed. 
Constant returns to scale indicate that the firm is 
able to scale the inputs and outputs linearly without 
increasing or decreasing efficiency. Conversely, 
if a proportional increase in all the inputs results 
in a more than proportional increase in the single 
output, increasing returns to scale (IRS) occur;  
if it results in a less than proportional increase  
in the output, decreasing returns to scale (DRS) 
follow. The efficient DMUs are considered  
as having constant returns to scale.

The CRS model permits to estimate the overall 
technical efficiency (TE) of a DMU. TE efficiency, 
which takes no account of the scale effect, 
encompasses technical efficiency and scale 
efficiency. The former describes the efficiency  
in converting inputs to outputs; the latter identifies 
the productive scale size of a DMU and recognizes 
that economy of scale cannot be attained at all 
scales of production. The VRS model measures 
the pure technical efficiency (PTE) because it 
takes into account the variation of efficiency  
with respect to the scale of operation. The CRS/VRS  
ratio calculate the scale efficiency (SE). The CRS 
efficiency of a DMU is always less than or equal 
to the pure technical (VRS) efficiency. If a DMU is 
fully efficient in both the CCR and BCC scores, it is 
operating in the most productive scale size (Cooper 
et al., 2007; Ramanathan, 2003). A complete 
theoretical background of the DEA model can be 
found in Cooper et al. (2006, 2007, 2011).

Technical efficiency in farming and the identification 
of its sources have received considerable attention 
by the scientific community as shown by Bravo-
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Ureta et al. (2007), who performed a meta-regression 
analysis including 167 technical efficiency studies 
at the firm level. Also, Liu et al. (2013) performed 
a literature survey on DEA applications, showing 
that agriculture and farm area was among  
the top-five industries addressed with a total number 
of papers equal to 258 from 1978 through August 
2010. Recently, Emrouznejad and Yang (2018),  
who carried out a survey of the first 40 years  
of DEA-related articles in the literature from 1978  
to 2016, revealed an exponential growth  
in the number of DEA applications since the seminal  
work of CCR in 1978. In this analysis, the agro-food  
sector was among the top 5 application fields  
of DEA with the greatest numbers of journal articles 
in 2015 and 2016. 

Several researchers have used DEA for efficiency 
estimation in crop production. Among these, 
Banaeian et al. (2011) examined the technical  
and scale efficiency of Iranian greenhouse 
strawberry production by applying the input-
oriented DEA technique. In another study  
by Mohammadi et al. (2011), the input-oriented 
DEA approach was employed to investigate  
the technical, pure technical and scale efficiency  
of kiwifruit production in Mazandaran province  
of Iran. Mousavi-Avval et al. (2012) used the DEA  
technique to evaluate the technical efficiency  
and identify the wasteful uses of the energy  
of barberry production in Iran. Mardani  
and Salarpour (2015) applied DEA to rank  
the technical efficiency of potato production  
in 23 Iranian provinces. Applications of DEA-Tobit 
two-step method have been found for rice farms: 
Dhungana et al. (2004) measured the economic 
inefficiency of Nepalese rice farms by employing  
the DEA technique to model efficiencies  
as an explicit function of discretionary variables,  
and a Tobit regression framework to explain  
variations in measured inefficiencies, while 
Boubacar et al. (2016) applied DEA models 
to estimate technical, pure technical and scale 
efficiency of rice farms in southwest of Niger,  
and Tobit regression to identify factors affecting 
their technical efficiency. With respect to the citrus 
cultivation, Beltrán-Esteve and Reig-Martínez 
(2014) compared the relative efficiency of organic 
and conventional citriculture systems in Spain 
in relation to a metafrontier that envelops both 
technologies and they analyzed the efficiency 
of each system through benchmarking process. 
Clemente et al. (2015) applied the output-oriented 
DEA approach in order to assess the technical 
efficiency of citrus producing properties in Brazil 
and he used an econometric approach to establish 
technical efficiency determinants. Focusing  

on the grape and wine sectors, Khoshroo et al. 
(2013) used a two-stage methodology, i.e. input-
oriented DEA method and Tobit regression,  
to identify the inefficiencies and their sources  
in Iranian grape farmers. Vidal et al. (2013) 
examined the efficiency of Spanish Designations  
of origin (Dos) in the wine sector through a joint use 
of DEA and a new additive based measure known  
as “bounded adjusted measure”. Urso et al. (2018) 
first investigated the comparative efficiency  
of wine and grapevine producers in Italy by using 
DEA model and, subsequently, they identified  
the determinants of the estimated levels  
of efficiency through an econometric model (Tobit). 
Applications of DEA can be found also for animal 
production sector, for example: Galanopoulos  
et al. (2006) used an input-oriented DEA model  
to evaluate the degree of technical and scale 
efficiency of commercial pig farming in Greece; 
Lansink and Reinhard (2004) applied DEA  
to compute input-based measures of technical 
efficiency of Dutch pig fattening farms;  
and Theodoridis et al. (2012) estimated the level  
of relative technical efficiency of Chios sheep farms 
in Greece by applied output-oriented DEA model.

In the field of olive production, several studies 
dealing with the computation of technical efficiency 
by employed DEA models. In the work by Amores 
and Contreras (2009), the DEA techniques 
were used to examine the economic efficiency  
of olive-growing farms in Andalusia and provide 
information for a better assignment of European 
agricultural subsidies. The results showed that  
the assignment of subsidies should be made  
in terms of Farm Efficiency results since  
the efficiency of farms would be under-estimated 
by an overall measurement (Overall Efficiency). 
Moreover, the results indicated that efficiency 
is positively related to the size of the farm  
and, then, large farms are more likely to improve 
their techniques. Artukoglu et al. (2010) compared 
the technical efficiency of organic and conventional 
olive farms in Turkey by using both input and output 
oriented DEA approaches. Their main finding was 
that the technical efficiency of conventional olive 
oil farms is lower than that of organic farms. 
Also, the Authors observed that the inefficiency 
is caused by the fact that the farms do not use 
minimum input or do not raise the maximum output  
from the actual inputs. In another study by Aparicio 
et al. (2016), a Luenberger-type indicator based  
on a specific weighted additive model in DEA 
was used to estimate and decompose productivity 
change for Protected Designations of Origin (PDOs)  
in the Spanish virgin olive oil sector. According 
to their results, the most productive PDOs were 
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those with an important number of oil mills  
and packaging/marketing companies. Furthermore, 
their findings revealed that productivity changes 
were mostly the consequence of downwards  
and upwards of the frontier of the technology  
over time. The Authors suggested that these 
changes were explained, to a certain extent,  
by the evolution of the economic crisis. Jurado  
et al. (2017) employed the DEA method to analyze 
the level of economic efficiency of organic olive 
oil producers in Andalusia. In addition, a second 
DEA stage using quality comparative analysis 
was applied to obtained levels of efficiency. 
They found that only a very small number  
of organizations were efficient in terms of economic 
profitability. Moreover, the Authors observed that 
the commitment to online sales, the commitment 
to web tools, the academic training of the leading 
manager, exports and the size of the organization 
were clear determinants of the most efficient 
organizations.

Materials and methods
Experimental design

The data-set used in this study was collected  
from 40 olive farmers from the area of “Gioia Tauro 
Plain”, located on the northern Tyrrhenian coast  
of Reggio Calabria province in Calabria (South 
Italy). This area was chosen as a representative 
of the Calabrian olive production, where olive 
growing cover 14.5% of the region’s olive area 
(185,915 ha), representing the most widespread 
agricultural activity (ISTAT, 2010). Local olive-
growing systems are mainly characterized  
by traditional and intensive orchards: the firsts 
developed mainly in hilly and mountainous areas 
with low-density planting (around 100 trees ha-1), 
while the second ones are based on moderate slope 
land and high-density planting (around 400 trees 
ha-1). Although most of these olive farms present 
limiting factors to quality of olive production, 
mainly due to low technological innovation degree 
in both olive cultivation and olive oil processing, 
the current tendency among local entrepreneurs 
is to adopt innovative and efficient management 
practices that could entail a more competitive 
position in the market. For sampling, a technique 
of non-probability sampling with reasoned choice 
and a stratified allocation was used. So, a sample 
of 40 olive farms was found and equally distributed 
between traditional and intensive olive growing 
systems (i.e., twenty farms for each cultivation 
system). For gathering the data, face-to-face survey 
method was conducted. The sample is mainly 

characterized by family farms with an average 
size from 4 to 13 ha, located in hilly areas. These 
farm units were chosen for their representativeness  
at the regional level.

DEA model implementation

This study aims at evaluating the performance  
of a farm by comparing it with the best managerial 
practices observed on the Pareto-efficient frontier. 
Specifically, with the purpose to evaluate the TE,  
PTE, and SE of olive farms examined, the input-
oriented CRS and VRS models were applied. 
The choice to use both models was due to our 
interest in determining the returns to scale  
of the farms under study and estimating their 
scale efficiency. Furthermore, the choice of input-
oriented approach finds its meaning in the limited 
inputs characterizing the agricultural sector 
(Toma et al., 2015), as well as in the major ability  
of producers to control inputs rather than output 
levels (Banaeian et al., 2011; Jiao et al., 2015). 
Therefore, it may be plausible to state that an input-
oriented model is more appropriate to quantify  
the excess use of inputs during the production 
processes and to identify inputs optimization 
strategies also to support agriculturally sustainable 
pathways.

The following CRS DEA model (Cooper et al., 
2011) was used to measure TE of olive farms under 
study: 

 	 (1)

subject to:

where n is the number of DMUs to be evaluated; 
each DMU consumes m inputs to produce s outputs; 
specifically, a DMUj consumes xij of input i  
and produces yrj of output r; λj are the weights 
assigned by the linear program; si and sr are 
the input and output slacks (i.e., the additional 
improvement, decrease in inputs and/or increase  
in outputs, needed for a DMU to become efficient); 
ε is a non-Archimedean element defined to be 
smaller than any positive real number. The value  
of θ obtained will determine the technical efficiency 
score of each DMU: if θ = 1, then DMU is efficient 
(frontier point); if θ < 1 DMU is inefficient and 
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must decrease its inputs level. In order to determine 
PTE scores, a VRS DEA model is applied by adding  
the constraint  to the equation (1). 

Excel 2013 spreadsheet and DEA-Solver-LV were 
used for data processing. DEA program has been 
run separately for each olive system considered.

Input and output description

The input variables used in the efficiency analysis 
are the following: (1) total olive area (ha),  
(2) fixed capital costs (€ ha-1), (3) variable 
capital costs (€ ha-1) (4) human labour (h ha-1).  
As the output variable, gross saleable production 
(€ ha-1) was selected. The total olive area included 
only owned land. Within the fixed capital costs, 
machinery and land investments ownership 
costs (i.e. depreciations, insurance, repairs,  
and maintenance) were included. Variable capital 
costs (i.e. fertilizers, pesticides, herbicides, and fuel 
and oil consumption used in the olive production 
process) were calculated according to the market 
pricing referred to 2016. Family labour needed 
during agricultural operations was measured  
in terms of opportunity cost and was equalized  
to the employment of casual workers (Stillitano  
et al., 2016, 2017). Finally, the gross saleable 
production was evaluated by multiplying  
the average olive production by its market price 
referred to the last harvesting season (2015-2016) 
and by excluding EU Agricultural Policy subsidies. 
The olive average selling price was provided 
by the Istituto di Servizi per il Mercato Agricolo 
Alimentare (ISMEA) and referred to the 2015/2016 
harvesting season. To evaluate farm efficiency 
excluding subsidy contribution, no subsidy 
was added in farm gross saleable production. 

Subsequently, the amounts of subsidy were 
added to estimate the impact on farm efficiency.  
The variables (inputs and outputs) selected in this 
study were in line with those utilized in similar 
studies already mentioned in the introduction 
section.

Descriptive statistics for inputs and outputs used 
in each olive system under study are displayed  
in Table 1. It is worth noting the low variability 
in the size of all the variables because  
of the homogeneous features of the sample.

Results and discussion
In Table 2 the results achieved by the implementation  
of input-oriented CCR and BCC DEA models 
are reported. The findings revealed that average 
technical efficiency (TE score), under CRS 
assumption and excluding EU subsidies,  
of intensive olive farms (0.760) was greater than 
of traditional ones (0.728). This means that,  
on average, the farms could reduce their inputs, 
and, then, reducing production costs, by 24%  
and 27.2%, respectively, providing the same level  
of production. According to Mohammadi et al. 
(2011), the variation in the technical efficiency  
of farmers could be caused by the incorrect 
application of the appropriate production 
techniques. 

Under VRS assumption and excluding subsidies, 
the traditional farms had higher PTE score (0.992) 
compared to intensive farms (0.989), although 
there are no significant differences. It is worth 
noting the greater pure technical efficiency than 
overall technical efficiency in both farm systems. 
This is highlighted by a low level of average 

Source: own processing
Table 1: Descriptive statistics of the inputs and outputs used in DEA model.

Intensive Farms

Olive area 
harvested

Fixed capital 
costs

Variable 
capital costs Human labour

Gross Saleable Production

Without 
subsidies

With  
subsidies

(ha) (€ ha-1) (€ ha-1) (h ha-1) (€ ha-1)

Max 15 2,073.10 1,994.30 146.50 9,900.00 11,800.00

Min 5 809.20 1,043.80 102.50 4,320.00 6,220.00

Average 8.8 1,334.16 1,387.33 113.36 6,568.00 8,468.00

St Dev 2.32 324.54 248.58 9.44 1,592.04 1,592.04

Traditional Farms

Max 13 3,208.54 1,862.96 264.50 4,940.00 6,840.00

Min 4 1,131.73 1,097.50 235.50 2,040.00 3,940.00

Average 7.75 1,882.38 1,344.18 257.18 3,018.80 4,931.30

St Dev 2.26 588.74 246.79 9.12 731.31 724.16
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DMU

Intensive Farms

TE score PTE score SE score TE score PTE score SE score
RTS

Without subsidies With subsidies

1 0.6493 0.9896 0.6561 0.7291 0.9896 0.7368 IRS

2 0.7209 1 0.7209 0.7772 1 0.7772 IRS

3 0.7067 0.9876 0.7156 0.7636 0.9876 0.7732 IRS

4 0.7332 1 0.7332 0.7955 1 0.7955 IRS

5 0.725 0.9888 0.7332 0.7834 0.9888 0.7923 IRS

6 0.8314 0.9757 0.8521 0.867 0.9757 0.8886 IRS

7 0.9315 1 0.9315 0.9502 1 0.9502 IRS

8 0.7049 1 0.7049 0.7768 1 0.7768 IRS

9 0.8163 1 0.8163 0.8855 1 0.8855 IRS

10 1 1 1 1 1 1 CRS

11 0.5788 0.9856 0.5873 0.675 0.9856 0.6849 IRS

12 0.6926 1 0.6926 0.8019 1 0.8019 IRS

13 0.5844 0.9317 0.6272 0.6553 0.9317 0.7033 IRS

14 0.7481 1 0.7481 0.8934 1 0.8934 IRS

15 1 1 1 1 1 1 CRS

16 1 1 1 1 1 1 CRS

17 0.6349 0.973 0.6525 0.6981 0.973 0.7175 IRS

18 0.6548 0.9565 0.6846 0.7065 0.9565 0.7386 IRS

19 0.8312 1 0.8312 0.9623 1 0.9623 IRS

20 0.6604 1 0.6604 0.7352 1 0.7352 IRS

Average 0.76 0.989 0.767 0.823 0.989 0.831

Max 1 1 1 1 1 1

Min 0.579 0.932 0.587 0.655 0.932 0.685

St Dev 0.134 0.018 0.129 0.114 0.018 0.107

Source: own processing
Table 2: DEA scores and returns to scale for the farms under study.

DMU

Traditional Farms

TE score PTE score SE score TE score PTE score SE score
RTS

Without subsidies With subsidies

1 0.6245 0.9844 0.6344 0.7432 0.9844 0.755 IRS

2 0.7266 0.9896 0.7342 0.817 0.9896 0.826 IRS

3 0.8361 1 0.8361 0.8979 1 0.898 IRS

4 1 1 1 1 1 1 CRS

5 0.854 1 0.854 0.9181 1 0.918 IRS

6 0.6976 1 0.6976 0.8043 1 0.804 IRS

7 0.8724 0.9993 0.873 0.9275 0.9993 0.928 IRS

8 0.8513 0.9936 0.8568 0.8975 0.9936 0.903 IRS

9 0.6165 1 0.6165 0.7586 1 0.759 IRS

10 1 1 1 1 1 1 CRS

11 0.583 1 0.583 0.7544 1 0.754 IRS

12 0.4818 0.9403 0.5124 0.6257 0.9403 0.665 IRS

13 0.6559 1 0.6559 0.9123 1 0.912 IRS

14 0.7351 0.9774 0.7521 0.847 0.9774 0.867 IRS

15 0.5352 0.9938 0.5385 0.6725 0.9938 0.677 IRS

16 1 1 1 1 1 1 CRS

17 0.682 0.9796 0.6962 0.7723 0.9796 0.788 IRS

18 0.4951 0.9818 0.5043 0.6551 0.9818 0.667 IRS

19 0.6878 1 0.6878 0.8268 1 0.827 IRS

20 0.6194 1 0.6194 0.864 1 0.864 IRS

Average 0.728 0.992 0.733 0.835 0.992 0.841

Max 1 1 1 1 1 1

Min 0.482 0.94 0.504 0.626 0.94 0.665

St Dev 0.163 0.015 0.159 0.113 0.015 0.104
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scale efficiency which was far to the optimal size, 
with a value of approximately 0.733 and 0.767  
in traditional and intensive systems, respectively. 
This results in a production scale that is not 
generally optimal in olive cultivation, as observed 
by Idda et al. (2004) who investigated technical  
and economic efficiency of Sardinian olive 
farms (Italy) by applied DEA technique. Also, 
Mousavi-Avval et al. (2012) confirm that the high 
difference between TE and PTE scores designates 
disadvantageous conditions of scale size.

The outcomes achieved so far, can be better 
explained by analyzing the efficiency score 
distribution as illustrated in Fig. 1 and 2.  
By applying the CRS model (excluding subsidies), 
the most of the intensive olive farms, equal to 55% 
of total, had technical efficiency between 0.60  
and 0.79; 10% had technical efficiency of less 
than 0.60 and 20% of farms were close to the DEA  
frontier, showing technical efficiency score 
between 0.80 and 0.99. Only 15% of farms were full 
technical efficient, indicating rational management 
of existing technology and no improvement  
on input use. When the VRS model is carried 
out, 60% of the intensive farms exhibited the full 
efficiency score and no farm operated below 0.80  
of the efficiency level. This wide variation between 

TE and PTE score confirms that the majority  
of farms in the samples don’t achieve the optimal 
scale size. Also analyzing the Return to Scale 
(RTS) it occurs that 17 intensive farms operated 
under increasing returns to scale and only three 
exhibited constant returns to scale (see Table 2).  
These findings suggest that small farm size  
of the olive farms under study leads to a failure  
to achieve an optimal production scale. 

As to the traditional olive farms, under CRS 
assumption the analysis showed that 15%  
of farmers had a technical efficiency of unity; 20% 
operated between 0.80 and 0.99 of the efficiency 
level and 65% below 0.80. Under the VRS 
model, 55% of traditional farms exhibited a pure 
technical efficiency score of one and the remaining 
farms (45%) had a score between 0.80 and 0.99.  
The return to scale analysis revealed that only three 
DMUs operated at the most productive scale size 
under CRS model and showing scale efficiency 
of one. The remaining farms revealed increasing 
returns to scale, indicating that technological 
change are necessary for changes in yield,  
as debated by Banaeian et al. (2011), as well  
as the need to increase their size in order to reach 
cost savings, as argued by Jiao et al. (2015).  
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Figure 2: Efficiency score distribution for the intensive farms under study.

Source: own processing
Figure 1: Efficiency score distribution for the traditional farms under study
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When EU subsidies are included in the output, 
improvements in terms of overall technical 
efficiency and scale efficiency are identified.  
For intensive farms, the average TE score 
(0.823) and SE score (0.831) were higher than 
that obtained by excluding subsidies (0.760  
and 0.767, respectively). In terms of efficiency 
score distribution, an increase in farms’ number 
of the 0.80 and 0.99 range was achieved. Also  
for traditional farmers, a higher TE score (0.835 vs. 
0.728) and SE score (0.841 vs. 0.733) were found. 
However, the addition of subsidies did not affect 
the farms’ percentage which reaches the all-out 
efficiency, endorsing the results obtained by Oxouzi 
et al. (2012). As debated by Galanopoulos et al. 
(2006), DEA model provides valuable information 
about managerial evaluation of all technically 
inefficient DMUs, allowing to identify and compute 
the sources of inefficiency. This is in turn enables  
a DMU to achieve the potential improvement of their 
productive performance. As an example, in Table 
3 the evaluation of the efficient input use levels  
of two inefficient DMU, i.e. DMU17 for intensive 
farms and DMU18 for traditional ones, is reported. 
The technical efficiency (TE) of DMU17 was 
found to be 0.635 suggesting that a 36.5% decrease  
of its inputs is possible without decreasing the level  
of gross saleable production. Thus, by reducing 
its actual input (second row of Table 3) DMU17 
is projected radially onto the best practice frontier. 
As this olive farm still cannot reach the efficiency 
frontier, slack adjustments are needed to push  
the DMU to the frontier (Ozcan, 2014). By adding 
these further input reductions and, especially, 
reducing variable capital costs and human labour 

by another 9.2% and 5.9%, respectively, DMU17 
reach its efficiency target (at frontier) becoming 
Pareto-efficient (fifth row of Table 3).    

DMU18 with a TE score of 0.495 could reduce its 
input levels proportionally by 50.5%, providing 
actual production level. For this olive farm, only 
slack adjustments in human labour (-13.58 h ha-1)  
are needed in order to become a Pareto optimal 
point.

As reported by Joro and Korhonen (2015), DEA is 
a benchmarking technique since inefficient DMUs 
are benchmarked against the efficient frontier.  
For each inefficient unit, efficiency analysis in DEA 
identify the corresponding peers, named reference 
set or peer group, within the efficient existing 
units. If an inefficient DMU corresponds more than 
one peer, then it is necessary to identify for each 
peer its contribution (i.e., peer weight or lambda)  
to the computation of score (Cooper et al., 2011). 
In Table 4, for the inefficient DMUs 18 and 12, 
the corresponding peer group, as well as efficiency 
targets for inputs, are identified. For DMU18  
the peers and their corresponding weights were 
2(0.31), 10(0.063) and 16(0.628). By multiplying 
the lambda value by the input level of the respective 
efficient DMU, the input targets were calculated. 
The results revealed that the most influential 
benchmark was DMU16, representing the 62.8% 
of the ideal peer for DMU18. For DMU12,  
the benchmark DMUs were 10(0.7), 11(0.242) 
and 13(0.058). It can be seen that DMU10 was  
the best reference unit, with 70% of the ideal peer.  
As argued by Hosseinzadeh-Bandbafha et al. (2018), 
the benchmarking approach allows inefficient farms 

Source: own processing
Table 3: Actual and efficient input use levels of DMU17 and DMU18.

Intensive Farms

DMU17
Olive area 
harvested

Fixed capital 
costs

Variable 
capital costs Human labour

(ha) (€ ha-1) (€ ha-1) (h ha-1)

Actual values 9.00 1,206.60 1,525.73 111.00

Radial movement -3.29 -440.53 -557.05 -40.53

Projected point 5.71 766.07 968.69 70.47

Slack adjustment 0.00 0.00 -140.56 -6.58

Pareto-efficient point 5.71 766.07 828.13 63.89

Traditional Farms

DMU18     

Actual values 9.00 1,510.07 1,516.53 255.50

Radial movement -4.54 -762.44 -765.70 -129.00

Projected point 4.46 747.64 750.84 126.50

Slack adjustment 0.00 0.00 0.00 -13.58

Pareto-efficient point 4.46 747.64 750.84 112.91
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Source: own processing
Table 4: Input Targets of DMU18 and DMU12 referred to their peers (based on BCC model).

Intensive Farms

DMU18
Input use levels of peers

Input Targets
DMU2 DMU10 DMU16

Lambda 0.31 0.063 0.628

Input

Olive area harvested 10 9 8 10 9.57

Fixed capital costs 1,223.588 1,136.23 1,306.19 1,173.70 1,171.61

Variable capital costs 1,994.30 1,230.63 1,369.60 1,299.10 1,283.62

Human labour 109.1 108.5 102.5 102.5 104.46

Output

GPV 6,600.00 6,600.00 92,40.00 9,900.00 6,600.00

Traditional Farms

DMU12
Input use levels of peers

Input Targets
DMU10 DMU11 DMU13

Lambda 0.7 0.242 0.058

Input

Olive area harvested 6 6 5 4 5.64

Fixed capital costs 2,442.06 2,102.64 2,638.45 3,208.54 2,296.45

Variable capital costs 1,530.90 1,239.40 1,640.20 1,553.50 1,354.61

Human labour 260 237.5 261 260 244.49

Output

GPV 2,380.00 4,940.00 2,400.00 2,160.00 2,380.00

to identify the reasons for inefficiency and find  
the best practices for improving production 
processes.

As mentioned before, several studies in scientific 
literature dealing with the efficiency assessment  
of olive farming, but most of these do not 
compare traditional and intensive olive-growing 
systems. The only ones to do it are Gómez-
Limón et al. (2012) that use a different empirical 
(and then not comparable with the present) DEA 
approach and pressure distance functions to assess  
the eco-efficiency of Andalusian traditional and 
irrigated intensive groves, and Niavis et al. (2018), 
which assess technical efficiency levels of extensive 
olive tree cultivation in Greek by implementing 
DEA input-oriented model, but without extend  
the sample to intensive systems.

Conclusion
This paper based on a sample survey of local 
farms assessed the technical efficiency of intensive 
and traditional olive farms in Southern Italy  
by employing input-oriented CRS and VRS models.  
The findings showed that intensive farms achieve  
a greater technical efficiency, under CRS 
assumption and excluding EU subsidies than 

traditional ones, while under VRS assumption 
their efficiency is lower, although no significant 
differences have emerged. However, technical 
inefficiencies among all farms, regarding the use  
of inputs, were found and, likely caused  
by the incorrect application of the appropriate 
production techniques. The variable capital costs 
and the use of human labour, especially in traditional 
farms, were the worst managed input in the sample 
examined. Thus, these inefficiencies need to be 
correct in order to increase farms’ performance 
and, therefore, their profitability. A higher level  
of technical efficiency through a potential reduction 
in input use would bring a decrease of average 
production cost and improve the competitiveness 
of farms. 

The results also showed the greater pure technical 
efficiency than overall technical efficiency  
in both farm systems, suggesting disadvantageous 
conditions of scale size. This wide variation 
between TE and PTE score endorse that  
the majority of farms in the samples don’t achieve 
the optimal scale size. Likewise, return to scale 
analysis revealed that only a very small number  
of farms may be considered full efficient, while  
the remaining ones operated under increasing 
returns to scale, suggesting that small farm size 
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leads to a failure to achieve an optimal production 
scale. When EU subsidies were included  
in the analysis, findings highlighted improvements 
in terms of overall technical efficiency and scale 
efficiency, though this did not affect the farms’ 
percentage which reaches the all-out efficiency.

The choice to use an input-oriented DEA model 
was due to the great potential of this approach 
to provide useful information about the excess 
use of inputs during the production processes.  
A better understanding of the resource use can offer 
evidence supporting inputs optimization strategies 

not only for cost savings but also for contributing  
to a more sustainable olive production. Although 
this study is the first step to a more extensive 
research work in which a more structured model 
will be implemented, it can contribute to expanding 
the knowledge of olive growing contexts in terms  
of production efficiency. However, some limitations 
of the research need to be furtherly investigated  
in order to guarantee a more adequate assessment  
of the farm’s efficiency. Two concerns, in particular, 
are those to extend the data sample and justifying 
the efficiencies differences in the input use.
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