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Abstract
The data aggregation process in this study has been enhanced by the hybrid firefly-artificial bee colony 
algorithm (HFABC) by increasing the average packet delivery ratio, end-to-end delay, and lifespan 
computation. In this study, HFABC and Multi Hop LEACH are two algorithms that are used to aggregate IoT 
data. Their performance is compared using evaluation criteria including average End-to-End Delay, PDR, 
and network lifetime. The HFABC method reduces average End-to-End Delay more effectively than Multi 
Hop LEACH, with gains of 2.20 to 8.66 %. This demonstrates how well it works to reduce the lag times  
for data transfer in IoT networks. With improvements ranging from 3.45% to 45.39%, HFABC has a greater 
success rate than Multi Hop LEACH in effectively delivering packets. HFABC increases network lifetime 
by 0.047 to 2.286 percent, indicating that it helps keep IoT networks operating for longer. For effective data 
aggregation in IoT networks, HFABC is a superior solution that decreases delays, improves packet delivery, 
and lengthens network lifetime.
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Introduction
Agriculture is crucial for human sustenance,  
and IoT sensors enable farmers to monitor, 
manage, and optimize activities. Data-driven 
decisions and improved irrigation and fertilizer 
application improve crop yield and resource 
management. Traditional data aggregation methods  
in agriculture are time-consuming, labour-intensive,  
and inefficient. IoT technology offers automated 
data collection, real-time monitoring, and remote 
access, enabling continuous data collection  
from sensors and drones for precision agriculture 

practices (Patel et al., 2012). The network is divided 
into clusters and each cluster has a cluster head 
or coordinator responsible for data aggregation. 
Sensors or nodes within a cluster transmit their 
data to the cluster head, who aggregates it  
and transmits it to the base station. These clusters 
include LEACH (Low-Energy Adaptive Clustering 
Hierarchy), HEED (Hybrid Energy-Efficient 
Distributed clustering), PEGASIS (Power-
Efficient Gathering in Sensor Information Systems)
(Sinha and Lobiyal, 2013). Clustering is crucial 
in IoT applications for efficient data acquisition, 
dissemination, and network longevity, minimizing 
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communication overhead and optimizing access  
to devices (Kumar and Zaveri, 2018). IoT networks 
consist of IP-enabled devices and sensor devices. 
Clustering designates a node as the Cluster  
Head (CH), providing scalability, reduced 
routing overhead, efficient bandwidth utilization,  
and improved stability. CHs minimize packet 
exchange, simplify network topology, and aggregate 
sensor data, reducing packet exchange rates (Sholla 
et al., 2017).  Cluster Head optimizes device battery 
life using advanced scheduling algorithms, enabling 
low-power mode operation when inactive, avoiding 
collisions, and prolonging device lifespan.

LEACH is a routing protocol that balances energy 
consumption by randomly selecting cluster heads 
(CHs) for data collection and merging. It operates 
in two stages: setup phase, based on probabilistic 
models, and steady phase, optimizing energy 
usage and network lifetime (Zheng et al., 2017). 
TL-LEACH is an improved LEACH algorithm 
with a two-level clustering hierarchy, primary  
and secondary Cluster Heads, and simple sensing 
nodes. It uses data fusion and TDMA-based 
scheduling for efficient communication, ensuring 
fairness in CH selection and distribution (Boyinbode 
et al., 2010). FLOC is a distributed technique that 
creates well-balanced clusters with minimal overlap 
in wireless networks. It classifies radio nodes based 
on their proximity to the inner Cluster Head and uses 
an i-band membership preference. This enhances 
intra-cluster communication robustness, efficiency, 
and reduces interference, improving network 
performance and reliability (Abbasi and Younis,  
2007).  HEED optimizes energy efficiency  
in WirelessSensor Networks (WSNs) by considering 
communication cost and energy factors. DEEC is 
a multilevel algorithm for heterogeneous WSNs, 
ensuring low probability of selecting the same 
CH, adapting to energy consumption, and allowing 
adjustable CH selection probabilities (Katiyar  
et al., 2010). EECS involves dynamic cluster sizing 
based on distance from the base station, ensuring 
equal energy distribution among nodes. This 
approach improves network lifetime, connectivity, 
and reliable sensing capabilities, enhancing energy 
efficiency and performance in wireless networks 
(Katiyar et al., 2011). 

EEUC divides nodes into clusters, reducing energy 
consumption for data forwarding. SEP improves 
LEACH by considering node heterogeneity  
and assigning higher probability of CH  
to advanced nodes, resulting in more efficient  
and balanced clustering (Tewari and Vaisla, 2014). 
The Deterministic Energy Efficient Clustering 

Algorithm (DEC) is a deterministic clustering 
protocol that minimizes uncertainties in Cluster 
Head selection. SECA ensures uniform cluster 
formation and load distribution by selecting CH 
nodes based on distance, and a centralized controller 
sink updates nodes for cluster formation (Rajput 
and Kumaravelu, 2018).  NCACM is a centralized 
protocol for clustering heterogeneous wireless 
sensor networks to improve energy efficiency.  
It enhances the selection process of Cluster Head 
Nodes (CHNs) and considers factors like distance 
and battery power. NCACM maximizes overall 
network energy efficiency and performance  
by considering multiple parameters.

LEACH is a crucial hierarchical routing protocol 
in Wireless Sensor Networks (WSNs) to extend 
network lifetime. It uses cluster heads to collect  
and aggregate data from non-CH nodes, ensuring 
fair energy distribution and prolonging the network's 
operational lifespan (Lee et al., 2017). The ODL-
CNN system uses IoT cameras for surveillance, 
utilizing IEHO algorithm optimization. 
Deep learning analysis generates sketches,  
and effectiveness is evaluated through examination 
and simulation, ensuring reliability and accuracy 
in fire surveillance applications (Elhoseny et al., 
2020).  The proposed approach improves traditional 
IDS performance and adaptability by combining 
MOPSO and Lévy flight randomization, introducing 
evolutionary and intelligent elements for effective 
multi-objective handling and enhanced intrusion 
detection capabilities (Hussein et al., 2022). 

The PL50 Optimization method uses dynamic 
pheromone adjustment in real-time data  
for logistics optimization. Combining mathematical 
modeling, fuzzy time windows, and an improved 
Ant Colony algorithm, it enhances production 
logistics efficiency and effectiveness. Numerical 
experiments validate its viability and performance 
(Huang et al., 2020). The competitive nature  
and superior performance of MOPSO  
over traditional machine learning methods, 
NSGA-II, and filter-based methods highlight its 
effectiveness as a powerful optimization algorithm 
for solving multi-objective problems (Habib et al., 
2020). The Ant Colony Optimization (ACO) multi-
objective service selection algorithm delivers quick, 
effective solutions, improving recall and precision 
while maintaining high efficiency. This approach 
has potential for enhancing service selection 
processes in various applications (Tian et al., 2019).  
The modified Genetic Algorithm for Resource 
Selection (MGA-RS) algorithm identifies 
optimal data using a modified genetic algorithm, 
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showing superiority when combined with kNN-
based fitness function. This improves resource 
selection and classification accuracy in various 
applications (Bharti et al., 2019). Improved GA  
and DBN enhance intrusion attack recognition 
rates, reduce neural network complexity,  
and optimize IoT network performance  
for effective data transmission (Zhang et al., 2019). 
the Grey Wolf Algorithm-based intelligent approach 
for routing in IoT networks demonstrated its 
superiority over AFSA and ABC in terms of energy 
consumption and network throughput. The findings 
emphasize the effectiveness of utilizing GWA 
for optimizing routing decisions and improving 
the overall performance of IoT networks (Mahdy 
et al., 2023).  Bee-Inspired Routing Algorithm 
(BIRA) is an energy-aware routing algorithm  
inspired by bee communication, designed  
for D2D IoT communication. It offers better 
packet delivery ratio, reduced energy consumption,  
and lower end-to-end delay, enhancing efficiency 
and reliability in IoT networks (Almazmoomi  
and Monowar, 2019). The Firefly algorithm  
improves mobile sink path optimization  
for sensor networks by optimizing storage  
and computing resources, improving connectivity 
and communication efficiency. It also shows 
superior performance in cluster head energy 
balance and network reliability compared  
to alternative methods (Sun et al., 2022). QoPF 
uses the Backtracking Search Optimization 
Algorithm (BSOA) to optimize resource allocation 
and meet QoS requirements in service-oriented 
IoT environments. It outperforms other techniques  
and enhances user experience by addressing metrics 
like jitter, delay time, and throughput (Badawy  
et al., 2020). 

A routing scheme developed using CSA Cuckoo 
Search Algorithm demonstrated effectiveness  
in network routing, with promising results  
compared to other contemporary algorithms 
(Nagavalli and Ramachandran, 2019).  Adaptive  
Immune algorithm and Endocrine regulation offer  
innovative solution for dynamic service issues,  
with simulation-based evaluation proving 
effectiveness and superiority over existing 
optimization techniques (Yang et al., 2019). A novel 
routing algorithm based on ACO optimizes path 
selection in IoT systems, addressing challenges 
in intersected areas. NS-2 evaluation shows 
effectiveness in improving energy consumption, 
end-to-end delay, packet loss ratio, bandwidth 
consumption, throughput, and control bit overheads 
(Said, 2017). 

Thus, Advanced Clustering Algorithms are 
essential for IoT networks to address scalability, 
energy efficiency, and heterogeneity. Dynamic  
and adaptive algorithms adapt to network changes, 
while hybrid clustering and optimization techniques 
integrate. QoS-Aware Clustering optimizes energy 
efficiency and application-specific requirements, 
while Security and Privacy in Clustering addresses 
unique security challenges.

Materials and methods 
In a low-power network topology designed  
for measuring and monitoring factors in a smart 
agricultural farm, the system includes (Figure 1):

	- IoT Sensor Nodes: These nodes 
are responsible for collecting data  
from the farming environment, such as soil 
moisture, air humidity, temperature, nutrient 
ingredients of soil, pest images, and water 
quality. They transmit the collected data  
to the IoT backhaul devices.

	- Reduced-Function Devices (RFDs): Some 
IoT sensor nodes are installed as RFDs, 
which have limited functionality and can 
only communicate with Full-Function 
Devices (FFDs). RFDs are designed  
to conserve energy and reduce investment 
costs. They cannot communicate with other 
RFDs.

	- IoT Backhaul Nodes: IoT backhaul nodes 
not only function as IoT sensor nodes  
but also act as intermediate nodes  
in the network. They receive information 
from other IoT nodes and transmit it  
to the control center or central server. IoT 
backhaul nodes are typically installed  
as FFD devices, capable of connecting  
to both FFD and RFD devices.

	- Full-Function Devices (FFDs): FFDs are 
devices that have complete functionality  
and can communicate with both FFD 
and RFD devices. They play a key role  
in relaying data between different nodes  
in the network, including IoT sensor nodes 
and IoT backhaul nodes.

The IoT sensor nodes, whether RFDs or FFDs, 
collect data from the farming environment  
and transmit it to the IoT backhaul nodes.  
The IoT backhaul nodes, particularly the FFDs,  
receive information from various nodes  
in the network and transmit it to the control center 
or central server for further processing and analysis 
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(Cheng et al., 2022). This network topology 
enables efficient data collection, communication, 
and management in a smart farm environment. 

The simulation parameters for the experiment 
include a total area of a sensor network deployment 
of 2000×2000 square meters, with the number  
of sensor nodes ranging from 100 to 1000, which 
determine the density and scale of the sensor 
network. The initial energy level (2 J) assigned  
to each sensor node in the network is used  
for sensing, communication, and other tasks.

The energy consumption rate (EC-energy  
per bit) for the electronic components of a sensor  
and electronic node during communication can be 
measured by a formula (Sharp et al., 2020).

EC  = Etx  + Erx  = (Eelectx + Eelecrx) × Tb =   
= (Eelectx + Eelecrx) × L/R 	 (1)

where L is the packet length in bits, R is the data rate 
in bits per second, Eelec - total energy consumption 
rate (energy per bit), Etx - energy consumption 
rate for transmitting one bit of data, Erx - energy 
consumption rate for receiving one bit of data,  
Tb -transmission time

The energy consumption rate (energy per bit  
per square meter) for free space transmission 
between sensor nodes can be calculated  
by the Equation 2.

EFC  = Eelecfs * d2 	 (2)

where Eelecfs - energy consumption rate per bit  
for free space transmission, d is the distance 
between the transmitting and receiving nodes  
in meters.

The energy consumption rate (Emp) for multi-path 
fading transmission calculated by the Equation 3. 
It can be measured by energy dissipation per bit  
of data (Eelecmp) with respect to distance between 
the transmitting and receiving nodes (d) in meters. 

EMC  = Eelecmp × d4	 (3)

The reference distance (df) at which the Efs energy 
model is calibrated is measured in meters and is 
used to determine the energy consumption for free 
space transmission. The maximum communication 
range between sensor nodes (dmax)in the network 
can be measured in meters. Packet length measures 
the data packet transmitted between sensor nodes, 
indicating the maximum distance for direct 
communication.

Table 1 displays IoT device parameters  
in agriculture, including coverage, sensor node 
count, initial energy consumption, communication 
distances, and packet length. Figure 2 shows IoT 
data aggregation performance analysis using 
Multihop Leach Protocol and HFABC.

The average End-to-End Delay and average 
Packet Delivery Ratio (PDR) are commonly used 
metrics to evaluate the performance of network  
communication. Here are the formulas  

Source: Own processing
Figure 1: Low-power network topology: Smart agricultural farm.
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for calculating these metrics (Khan et al., 2013): 

Average End-to-End Delay: The average End-
to-End Delay is the average time a packet takes 
to travel from source to destination in a network, 
calculated by summing individual packet delays 
and dividing by total packets using the Equation 4.

Average End-to-End Delay = (Sum of Delays  
for all packets) / (Total number of packets)	 (4)

Average Packet Delivery Ratio (PDR):  
It measures the efficiency and reliability of message 
delivery by comparing the number of successfully 
delivered packets to the total number sent within 
the network (Equation 5).

Average PDR = (Number of successfully delivered 
packets) / (Total number of packets sent)	 (5)

Lifetime computation: Estimate lifetime 
computation for IoT devices using the Equation 6.

Lifetime = (Initial Energy / Energy Consumption 
Rate) × (1 - (1 - PDR)n) 	 (6)

Where, Initial Energy - The initial energy level  
of the sensor nodes, Energy Consumption  
Rate - The rate at which the sensor nodes consume 
energy during their operations, PDR (Packet  
Delivery Ratio) - The ratio of successfully delivered 
packets to the total number of packets sent 
and n -  The number of rounds or cycles.

Multihop-LEACH Protocol

The Multihop-LEACH Protocol is an extension  
of the LEACH protocol for multi-hop 
communication in Wireless Sensor Networks 
(WSNs). The Multihop-LEACH Protocol 
improves network scalability, energy efficiency,  
and connectivity by enabling data transmission 
through intermediate nodes. Clusters form,  
with a designated Cluster Head responsible  

S. No. Parameter Value

1 Area 2000 * 2000 m2

2 Number of Sensor Nodes 100,200,300,400,500,600,700,800,900, 1000 

3 Initial Energy of Nodes 2 Jules 

4 Econsume 50 nJ/bit

5 EFC 10 pJ/bit/m2

6 EMC 0.0013pJ/bit/m4

7 df 87 

8 dmax 25 m

9 Packet length 30 bit

Source: Own processing
Table 1: Smart agricultural farm IoT system energy parameters and their values.

Source: Own processing
Figure 2: Schematic arrangement for performance analysis for IoT data aggregation using 

Multihop Leach Protocol and HFABC.
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for data aggregation and transmission. This 
approach extends coverage and enables efficient 
data routing over longer distances, enabling WSNs 
to monitor and collect data from a wider geographic 
area (Patil, 2012). Multi-hop LEACH improves 
network scalability, energy efficiency, and coverage 
area by optimizing data transmission over long 
distances (Biradar et al., 2011).

The implementation steps of the Multihop-
LEACH Protocol are as follows:

	- The network is initialized by deploying 
sensor nodes in the target area. Each node 
is equipped with energy and communication 
capabilities.

	- Nodes organize themselves into clusters 
with a designated Cluster Head (CH). 
The CH selection process can be based  
on various factors such as energy level, 
distance to the base station, or a combination 
of these factors.

	- Non-Cluster Head nodes collect data  
from their sensing environment and transmit 
it to the CH within their cluster.

	- The CH collects the received data from its 
member nodes and performs data aggregation 
to reduce redundancy and minimize  
the amount of data to be transmitted further.

	- Instead of directly transmitting data  
to the base station, the CHs utilize other 
CHs as relay nodes to establish multi-hop 
communication. The data is forwarded  
from one CH to another until it reaches  
the base station.

	- To ensure balanced energy consumption, 
the role of CH is rotated among nodes  
in subsequent rounds. Nodes with higher 
energy levels are selected as CHs, distributing 
the energy load throughout the network.

	- The exact formulas used in the Multihop-
LEACH Protocol may vary depending  
on the specific implementation and variations 
of the protocol. However, some commonly 
used formulas in the protocol may include:

	- The formula to determine the probability  
of a node becoming a Cluster Head, which 
can be based on parameters like residual 
energy, distance to the base station,  
or a combination of factors.

	- A formula to calculate the optimal path  
for data transmission through intermediate 
CHs, considering factors such as distance, 
energy consumption, or link quality.

Hybrid firefly - artificial Bee colony algorithm 
(HFABC)

The hybrid firefly-artificial bee colony algorithm 
solves complex optimization problems  
by combining fireflies and artificial bees. Fireflies 
communicate using light signals, while artificial 
bees mimic honey bees' foraging behavior, using 
employed, onlooker, and scout bees to explore 
solutions and exploit promising regions. The hybrid 
firefly-artificial bee colony algorithm combines 
firefly's attractiveness with artificial bee colony's 
exploration and exploitation strategies, increasing 
diversity and efficiency. This adaptive optimization 
tool exploits local and global search spaces, making 
it popular in engineering, economics, and other 
fields (Mallala et al., 2022).

The algorithm randomly places fireflies  
in a search space and evaluates their objective 
function using artificial bees. Iteratively, iterates 
until a termination condition is met, encouraging 
exploration and exploitation. Onlooker bees select 
employed bees based on fitness, and employed 
bees generate new solutions using exploration  
and exploitation strategies. The algorithm evaluates 
and updates the best solution if a better one is 
found. An explanation of the different components  
and steps in the provided MATLAB code  
for the hybrid firefly-artificial bee colony algorithm 
(Mallala et al., 2022):

	- Initialization of parameters and variables:  
Code initializes parameters like coverage 
area, sensor node number, energy 
consumption, communication distances,  
and packet length.

	- Main loop for different number of sensor 
nodes: Loop iterates over sensor node 
values, executing and evaluating algorithm 
for specified numbers.

	- Firefly initialization: Code generates 
random initial firefly positions in specified 
coverage area for each iteration.

	- Evaluation of firefly fitness:  
The code evaluates firefly fitness using  
the evaluateFitness() function, solving  
a specific problem by calculating fitness 
based on provided parameters.

	- Artificial bee initialization: The employed 
bees are initialized based on the positions  
of the fireflies.

	- Best solution initialization: The code 
initializes the best solution and best fitness 
variables to track the best solution found 
during the algorithm execution.
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	- Main algorithm loop: The code enters  
a loop that iterates for a specified number 
of iterations. This loop represents the main 
algorithm execution.

	- Firefly movement: The moveFireflies() 
function is called to update the positions  
of the fireflies based on their attractiveness 
and distance. The fireflies move towards 
brighter and closer fireflies, exploring  
and exploiting the search space.

	- Artificial bee movement: The moveBees() 
function is called to update the positions  
of the employed and onlooker bees based  
on the positions of the fireflies. This 
movement allows the bees to explore  
and exploit the search space using  
the employed bees' generated solutions.

	- Evaluation of employed bees' fitness 
and updating best solution: The fitness  
of the employed bees' positions is evaluated 
using the evaluateFitness() function.  
The code then updates the best solution  
and best fitness if a better fitness value is 
found among the employed bees' solutions.

	- Scout bees exploration: 
The scoutBeesExploration() function 
is called to perform exploration  
for the employed bees. It updates 
their positions to explore new regions  
of the search space.

	- Output the best solution found: After 
the main algorithm loop completes,  
the code outputs the best solution and its 
corresponding fitness for the current number 
of sensor nodes.

Hybrid firefly-artificial bee colony algorithm  
for IoT agriculture devices, enabling customization 
and adaptation (Table 2).

Parameter Example Value

Population Size 50

Iterations/Generations 500

Attractiveness 0.7

Distance Calculated using a distance metric 
(e.g., Euclidean or Manhattan)

Exploration Rate 0.6

Exploitation Rate 0.4

Fitness Function Problem-specific

Initial Energy of Nodes 2 Jules

Energy Consumption Rate 50 nJ/bit

EFC 10 pJ/bit/m²

EMC 0.0013 pJ/bit/m⁴

Communication Range 25 meters

Source: Own processing
Table 2: Hybrid firefly and artificial bee colony algorithm. 

Experiments with sensor nodes ranging from 100 
to 1000 are conducted, with lifetime computation 
performed for 0 to 1000 rounds. Results include 
average End-to-End Delay, Packet Delivery Ratio, 
and Lifetime Computation. Network lifetime 
is evaluated based on alive edge sensor nodes, 
providing insights into performance changes  
as rounds progress. A MATLAB code program is 
provided to simulate average End-to-End Delay, 
Packet Delivery Ratio, and Lifetime computation 
for the hybrid firefly artificial bee colony algorithm 
(Yang and Slowik, 2020; Karaboga and Basturk, 
2007; Karaboga and Basturk, 2008). MATLAB code 
simulates average end-to-end delay and average 
PDR for hybrid firefly-artificial bee colony algorithm 
using IoT device parameters in agriculture. The IoT 
device initializes parameters like area, sensor count, 
energy consumption, communication distances,  
and packet length. A hybrid firefly-artificial bee 
colony algorithm is implemented, considering 
population size, generation iteration, attractiveness, 
distance calculation, exploration, exploitation 
rates, and fitness function. The simulation loop 
iterates over 100-1000 sensor nodes and rounds 
for lifetime computation. The algorithm calculates 
average End-to-End Delay and Average PDR after 
each round, and displays results for each iteration.

	- Fitness Calculation (calculate Fitness 
function): Fitness calculation function 
evaluates position fitness based  
on optimization goals and problems, 
determining position suitability.

	- Firefly Movement (firefly Movement 
function):  Firefly movement function 
adjusts position based on attractiveness  
and distance, aiding search space exploration.

	- Artificial Bee Movement 
(artificialBeeMovement function): 
Artificial bee movement function simulates 
population movement based on exploration 
and exploitation rates.

	- Update Best Solution (updateBestSolution 
function): Update best solution function 
compares fitness values for optimal 
performance in iterations.

	- Calculate End-to-End Delay and PDR 
(calculate EndToEndDelayAndPDR 
function): Function calculates End-to-End  
Delay and Packet Delivery Ratio  
by determining optimal position, measuring 
packet travel time, and dividing successful 
packets.

	- Update Lifetime Computation 
(updateLifetime function):  Update lifetime 
computation function updates network 
lifetime based on PDR, node number, 
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initial energy, energy consumption rate,  
and message delivery reliability.

	- Simulation Results Storage: Code 
simulates Hybrid Firefly-Artificial Bee 
Colony algorithm, evaluating metrics,  
and storing results.

Results and discussion 
Table 3 and Figure 3 present the Average Packet 
Delivery Ratio (PDR) results for both the Multi Hop 
LEACH and HFABC algorithms. The "Number  
of Rounds" column indicates the rounds or iterations 
of the simulation, while the "Multi Hop LEACH" 
and "HFABC" columns indicate the PDR values 
achieved at a particular round. The "Percentage 
of Improvement" column shows the percentage 
improvement of HFABC over Multi Hop LEACH 
in terms of PDR (Cheng et al., 2022; Sharp et al., 
2020; Khan et al., 2013).

Average Packet Delivery Ratio: Comparative 
analysis 

The PDR is an important metric that measures  
the ratio of successfully delivered packets  
to the total number of packets sent.  
At the beginning of the simulation, HFABC 
achieved a PDR of 0.7556, 17.24% higher than 
Multi Hop LEACH's PDR of 0.6445. This indicates 
that HFABC outperforms Multi Hop LEACH 
in terms of packet delivery, providing a higher 
percentage of successful packet transmissions. 
HFABC consistently achieves a higher PDR 
than Multi Hop LEACH, resulting in percentage 
improvements ranging from 3.45% to 45.39%.  
For example, at round 400, HFABC achieved 
a higher PDR of 0.6810, representing  
a 3.45% improvement over Multi Hop LEACH.  
As the rounds continue, the percentage improvement 
increases, indicating that HFABC consistently 
achieves a higher PDR than Multi Hop LEACH.

Number of Rounds Multi Hop LEACH HFABC Percentage of improvement (%)

0 0.6445 0.7556 17.24

100 0.6461 0.7448 15.26

200 0.6478 0.7340 13.30

300 0.6531 0.7075 8.34

400 0.6583 0.6810 3.45

500 0.6196 0.6633 7.05

600 0.5810 0.6456 11.13

700 0.5667 0.6477 14.29

800 0.5525 0.6498 17.62

900 0.5080 0.6392 25.82

1000 0.4383 0.6373 45.39

Source: Own processing
Table 3: Average Packet Delivery Ratio. 

Source: Own processing
Figure 3: The variation of Average Packet Delivery Ratio: Multi-Hop Leach and HFABC. 
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Multi Hop LEACH's PDR dropped significantly  
to 0.4383 by round 1000, while HFABC maintained 
a much higher PDR of 0.6373, resulting in a 45.39% 
improvement over Multi Hop LEACH. HFABC 
optimizes fireflies and artificial bees' movement  
to improve data transmission efficiency, resulting  
in higher packet delivery percentages. This enhances 
reliability and performance in IoT networks, 
supporting various agricultural applications  
and enhancing data transmission (Sharp et al., 
2020; Cheng et al., 2022).

The optimum results of Table 3, which presents 
the Average Packet Delivery Ratio (PDR)  
for the HFABC algorithm compared to the Multi  
Hop LEACH algorithm, can be observed  
at the highest number of rounds (round 1000). 
At this point, HFABC achieves a PDR of 0.6373, 
while Multi Hop LEACH only achieves a PDR  
of 0.4383. HFABC significantly outperforms Multi 
Hop LEACH in packet delivery performance,  

with a high PDR value of 0.6373 indicating 
successful delivery of a large percentage of packets. 
HFABC algorithm is crucial for reliable IoT data 
transmission in agriculture, ensuring accurate 
collection for decision-making and monitoring, 
supporting smooth agricultural applications.

Average End-to-End Delay: Comparative 
analysis

Table 4 and Figure 4 show average End-to-
End Delay for Multi Hop LEACH and HFABC 
algorithms, with HFABC showing a percentage 
improvement over Multi Hop LEACH. Number of 
rounds: simulation iterations; Multi Hop LEACH: 
average End-to-End Delay achieved for given 
number of rounds.

Percentage of improvement (%): The percentage 
improvement of HFABC over Multi Hop LEACH, 
calculated as ((Multi Hop LEACH - HFABC) / Multi 
Hop LEACH) * 100.

Source: Own processing
Figure 4: The variation of Average End-to-End Delay: Multi-Hop Leach and HFABC.  

Number of Rounds Multi Hop LEACH HFABC Percentage of improvement (%)

0 0.00196 0.00191 2.20

100 0.00191 0.00186 2.57

200 0.00185 0.00179 3.51

300 0.01051 0.01016 3.29

400 0.01916 0.01818 5.10

500 0.02606 0.02423 7.03

600 0.03296 0.03027 8.15

700 0.05181 0.04757 8.18

800 0.07066 0.06497 8.05

900 0.08353 0.07630 8.66

1000 0.09880 0.09065 8.25

Source: Own processing
Table 4: Average End-to-End Delay. 
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The Table 5 compares HFABC algorithm to Multi 
Hop LEACH in terms of average End-to-End 
Delay. HFABC consistently achieves lower delays  
for increasing rounds, with a percentage 
improvement column indicating superior 
performance. The numerical values represent 
average delays for different simulation rounds.

For 0 rounds, Multi Hop LEACH achieves  
an average End-to-End Delay of 0.00196, 
while HFABC achieves a slightly lower value 
of 0.00191. HFABC outperforms Multi Hop 
LEACH in reducing average End-to-End Delay 
by 2.20%. As rounds increase, both algorithms 
decrease, indicating increased efficiency in packet 
transmission, resulting in reduced delays.

Looking at specific data points, for example, when 
there are 500 rounds, Multi Hop LEACH achieves 
an average End-to-End Delay of 0.02606, while 
HFABC achieves a lower value of 0.02423. This 

indicates that HFABC performs significantly 
better in this case, with an improvement of 7.03% 
over Multi Hop LEACH. The HFABC algorithm 
consistently outperforms Multi Hop LEACH  
in average End-to-End Delay reduction,  
with percentage improvements ranging from 2.20% 
to 8.66%. The HFABC algorithm outperforms 
Multi Hop LEACH in optimizing network routing 
and transmission mechanisms, resulting in lower 
average End-to-End Delay. This improvement is due 
to its hybrid nature, combining firefly optimization 
and artificial bee colony algorithms for efficient 
packet routing and transmission solutions.

Lifetime computation: Comparative analysis

Table 5 and Figure 5 depict the lifetime computation 
results for the Hybrid Firefly-Artificial Bee Colony 
(HFABC) algorithm compared to the Multi Hop 
LEACH algorithm. The "Number of Rounds" 
column indicates the number of rounds or iterations 

Number of Rounds Multi Hop LEACH HFABC Percentage of improvement (%)

0 100 100 0

100 86 90 0.047

200 74 86 0.162

300 62 73 0.177

400 15 32 1.133

500 7 23 2.286

600 5 14 1.800

700 2 9 3.500

800 0 6 -

900 0 2 -

1000 0 0 -

Source: Own processing
Table 5. Lifetime computation for HFABC. 

Source: Own processing
Figure 5: The variation of life time computation: Multi-Hop Leach and HFABC.  



Optimizing IoT Data Aggregation: Hybrid Firefly-Artificial Bee Colony Algorithm for Enhanced Efficiency 
in Agriculture

[127]

of the simulation, while the "Multi Hop LEACH" 
and "HFABC" columns represent the number  
of alive edge sensor nodes for each algorithm  
at a specific round. The "Percentage  
of Improvement" column shows the percentage 
improvement of HFABC over Multi Hop LEACH 
in terms of the number of alive nodes (Sun et al., 
2022; Zhang et al., 2019).

HFABC had higher active edge sensor nodes than 
Multi Hop LEACH, indicating improved energy 
efficiency and longer network lifetime, with both 
algorithms having 100 active nodes. HFABC has  
a longer network lifetime due to its higher number 
of alive nodes. By round 400, HFABC had 32 
active nodes, a 1.133% improvement. By round 
500, it had 23 active nodes, a 2.286% improvement. 
HFABC consistently outperforms Multi Hop 
LEACH in terms of alive nodes, with 6 and 2 active 
nodes achieved at rounds 800 and 900, respectively. 
HFABC outperforms Multi Hop LEACH in terms 
of alive nodes. At rounds 800 and 900, HFABC 
achieves 6 and 2 alive nodes, respectively, while 
Multi Hop LEACH has no remaining nodes.  
The optimum result is observed at round 900, where 
HFABC achieves a network lifetime of 2.

Conclusions 
According to the simulation results for average 
End-to-End Delay, average Packet Delivery Ratio 
(PDR), and Lifetime computation for the Multi 

Hop LEACH and HFABC algorithms over varying 
numbers of rounds. 

•	 HFABC algorithm consistently achieves 
lower average End-to-End Delay values 
than Multi Hop LEACH, with a percentage 
improvement from 2.20% to 8.66%, 
demonstrating its superiority in reducing 
delays.

•	 HFABC outperforms Multi Hop LEACH 
in terms of Average Packet Delivery Ratio 
(PDR) for most rounds, ranging from 3.45% 
to 45.39%, indicating its ability to deliver 
more packets successfully.

•	 HFABC shows a significant improvement 
in lifetime compared to Multi Hop LEACH, 
with a percentage improvement ranging  
from 0.047% to 2.286% across rounds.

The HFABC algorithm outperforms Multi Hop 
LEACH in terms of average End-to-End Delay, 
Packet Delivery Ratio, and Lifetime computation.  
It achieves lower delays, higher PDR, and improved 
lifetime compared to Multi Hop LEACH. This 
highlights the effectiveness of the hybrid firefly-
artificial bee colony algorithm in optimizing IoT 
data transmission in agricultural systems. HFABC 
improves overall performance and efficiency, 
leading to better decision-making and resource 
management, making it a promising choice for IoT 
applications in agriculture.
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