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Abstract
This contribution is oriented to ways of computer vision algorithms for mobile robot localization in internal 
and external agricultural environment. The main aim of this work was to design, create, verify and evaluate 
speed and functionality of computer vision localization algorithm. An input colour camera data and depth 
data were captured by MS® Kinect sensor that was mounted on 6-wheel-drive mobile robot chassis.  
The design of the localization algorithm was focused to the most significant blobs and points (landmarks) 
on the colour picture. Actual coordinates of autonomous mobile robot were calculated out from measured 
distances (depth sensor) and calculated angles (RGB camera) with respect to landmark points. Time 
measurement script was used to compare the speed of landmark finding algorithm for localization in case  
of one and more landmarks on picture. The main source code was written in MS Visual studio C# programming 
language with Microsoft.Kinect.1.7.dll on Windows based PC. Algorithms described in this article were 
created for a future development of an autonomous agronomical mobile robot localization and control.
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Introduction
In this era there are many available solutions  
for indoor and outdoor navigation systems. Usually 
these navigation systems are based on odometria 
or global positioning system (GPS). Human 
obtain the most of information by vision. Designs  
of an autonomous mobile robots and inputs control 
algorithms are built by using conventional integrated 
sensors. Only a tiny sphere of research teams 
are working on a camera sensing and processing 
multidimensional scenes. Nowadays, satisfactory 
results are not achieved in the field of navigation 
yet; where the inputs for control algorithm are 
obtained from complex camera systems.

Duchoň (2012) says that localization represents  
a set of tasks that are guide to determinate object’s 
place or position in an environment. A localization 
system is a technology that estimates current 
location to run an autonomous navigation systems 
safely and consistently (Abdel Hafez et al., 2008; 
Son et al, 2015; Royer et al., 2007; Wang et al., 
2006). Object’s position can be assigned relatively,  
with respects to another object’s position  

in environment, or absolutely, with respects  
to beforehand defined coordinate system.  
The mobile robot is not able to make useful activity, 
without knowing about, where in environment 
it is. It seems, that the answer to the most 
important question: “Where am I?” doesn’t exist,  
and any universal solution doesn’t exist in robotics 
either. Especially, the reason is the measurement’s 
uncertainty of used sensors for the mobile robot 
localization. Therefore, mixed robot localizing 
methods are applied in the mobile robot applications, 
where each one of method has some pro-and-con. 
For this reason, application is very individual. 
Conventionally, sensor based vision localization 
systems have three inherent limitations: sensitivity 
to illumination variations, viewpoint variations, 
and high computational complexity (Son, J. et al., 
2015).

Practically proved methods like triangulation, 
trilateration, modern methods like inertial 
navigation methods, but also difficult mathematic 
probability and statistical methods are used  
in sphere of mobile robot localization. Many 
authors (Son, J. et al., 2015; Kim, H. et al., 2015; 
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Hu, G. et al., 2012; Davison, A. J. et al., 2007; 
Eade, E. et.al., 2006; Wolf, J. et.al., 2002; Ohya, 
A. et al., 1998) see big potential in computer vision  
as a very useful tool for autonomous robot 
localization system (SLAM). 

Materials and methods
Environment property extraction based localization 
is a specific localization where an application needs 
sufficient precise sensors, e.g. laser range finders.  
Trilateration and trilateration localization methods 
belong to this group. The triangulation methods are 
applied for detected natural environment marks like 
edge of door or edge caused by colour difference. 
If these environment marks are detected exactly, 
then this information may be used as the input  
for triangulation method and it can help  
to determine the absolute position of the mobile 
robot. But the reactive movement is determined 
between two positions of the mobile robot more 
frequently (Duchoň, 2012).

Vision-based localization system, frequently called 
as vision odometry, is a relative localization method 
based on obtained information from visual system. 
The visual systems are usually mounted on mobile 
robots in mobile robotics sphere and sense three 
dimensional environments in one plain.

To determine the relative position of the mobile 
robot, the third dimension of the reconstructed 
image is needed. To reconstruct the third 
dimension of a space is necessary to compare two 
consecutive images from the sequence of images. 
The motion vector of the mobile robot is indicated 
by two compared corresponding frames (two 
successive positions) that consequently localize 
the mobile robot relatively in environment. It is 
necessary to pair the significant characteristics  

of the environment in images, to determine 
the motion vector. If these significant marks 
(characteristics) match in pairing, vectors 
are created between these significant marks.  
After that vectors characterise the position change 
of the mobile robot among two images (frames) that 
were captured by the visual system (Duchoň et al., 
2014). This methodology is also called as optical 
flow localization (Figure 1).

If the robot is described by a translation vector Tv 
and by rotation vector Rv and vector Li

a describes 
the significant points of the first image and  Li

b 
describes the second image (Duchoň et al., 2012), 
then we can apply (1):

Li
b = Rv.Li

a + Tv + ei  (1)

where ei is error in the position estimation.

Error ei should be the minimum for matching pairs 
of significant points of the two images, which 
responds to error minimizing with method of least 
squares (2):

  (2)

The biggest source of visual odometry errors are 
dynamic objects in the environment. It is necessary 
to decide, whether the movement significant 
environment marks was caused by the movement 
of the mobile robot, or the movement of objects  
in the environment. The solution to this problem is 
to use visual odometry for prediction of an expected 
movement. This will provide by certain value 
characterizing the eventually maximum distance 
between the pair and the corresponding significant 
marks. The implementation and the application  
of this filter can help to remove cases when probably 
there has been captured a motion of a dynamic 
objects (Duchoň et al., 2014).

Source: http://www.math.ntnu.no/~anstahl/Images/Hand.jpg
Figure 1:  Variational optical flow estimation.
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Multiple methods and procedures can be selected 
for a digital image processing and for purpose  
of obtaining some information that will be 
served to the mobile robot localization system.  
The environment has the biggest impact wherever 
the mobile robot will move. Under this condition, 
the image processing algorithms should be chosen 
carefully. In addition, a fast image processing 
is required with correct output information.  
The environment and objects in the environment are 
containing characteristic features that are possible 
to use as landmarks, e.g. edges, different colours  
or surface topography and shadows.

The Canny edge detector is useful at first step  
of the image processing. In principle, Canny edge 
detector is composed by several elements that are 
used at image analysis. These include, for example: 
noise suppression, application of a convolution 
operator with a mask, calculate the direction  
and the intensity of edges and others. Multiple 
steps combined can be considered as an advantage 
of this detector, although more time is required  
to perform operations. Minor drawback may be  
the sensitivity; unwanted edges can be obtained  
on the output image in addition to the necessary 
edges. This could be eliminated by threshold 
intensity. The Hough transformation is a standard  
method for shape recognition in digital 
images (Yuen, 1990). It was firstly applied  
to the recognition of straight lines and later 
extended to circles and ellipses (Duda, 1972). 
The Hough transformation has more advantages: 
robustness to noise, robustness to shape distortions 
and to occlusions or missing parts of an object. Its 
main disadvantage is the fact that computational 
and storage requirements of the algorithm are 
increased as the power of the dimensionality  
of the curve (Ioannou, 1999).

The above description is the summary of methods 
that can be changed and controlled by an appropriate 
control algorithm. One of the ways is using fuzzy 
control algorithm to decide, which method is 
relatively better for localization in the concrete 
situation. Hrubý (2007) says that fuzzy control is 
qualitative control based on qualitative description 
of real systems. We do not need to know the exact 
equation of control system. One of main benefits 
of fuzzy control system is intuitiveness of design, 
that allows control system designing too, where 
isn’t available a mathematical model of the system 
(environment) or it is hardly determinable (Hrubý 
et al., 2007).

Results and discussion
The both, the colour camera and the depth sensor 
of the MS® Kinect capture images in resolution 
640x480pixels at 30fps. The colour and the depth 
sensor capture angle are not the same, the depth 
camera has smaller capture angle. Different vertical 
and horizontal capture angles of both sensors cause 
difference between captured images of the scene, so 
an image calibration process is needed. The colour 
image sequence captured by the colour camera 
was calibrated manually i.e. the original width  
and height of the colour images were reduced 
(deleted) in relation to image captured by the depth 
sensor. The image calibration is described next;  
a rectangle calibration object was moved in front 
of the depth camera, from one side of depth 
image to another side. When the calibration object  
on the depth image touched the border of the depth 
image, the colour image pixel lines are deleted 
from that side up to the border of calibration object 
appeared on the colour image. These steps are 
repeated on each side of the colour image. Then  
a new colour image was created with new width 
and height, so the size of the final colour image will 
be smaller.

After the calibration process, the algorithm 
calculated the ratios between depth image  
and new colour image width and height. Definition 
of ratios is needed, because the new colour image 
size was reduced and the depth image was not.   
The colour and the depth image do not need to have 
the same resolution, but they need to have the same 
aspect ratio. The calculation of the ratio for each 
dimension is shown next in formula (3) for width 
and for height formula (4):

  (3)

  (4)

where: 

Rx – calibration ratio for width ( x line );
Ry – calibration ratio for height ( y line );
xorg , yorg – width and height of the depth image;
xcalib , ycalib – width and height of the new calibrated 
colour image from VGA camera.
These calibration ratios were used for determining 
the distance at pixel on the depth image.

Landmark finding algorithm should be able  
to find shining colour objects, edges, circles, lines 
or rectangles by using of RGB camera. For example 
tree stumps, wine grapes stems, poles, ground  
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and grass colour contrast and even static shadows 
indoor and outdoor in agrarian sector.  The main 
landmark finding algorithm should memorize 
constantly set vicinity of these objects on images. 
The landmark finding algorithm should these object 
notice on a new image anytime. Therefore, Khan 
et.al. (2012) image processing algorithm, upper 
mentioned Duchoň’s (2014) optical flow algorithm 
or colour comparing histogram based method could 
be applied. However MS® Kinect colour camera 
colour sensing and our algorithm are dependent  
from ambient illuminance (light) level,  
for monitoring this variable, our mobile robot 
NUC (fig. 11a) was supplemented by an external 
light-dependent resistor monitor. The value  
of measured ambient illuminance level 
compensatesthe RGB colour offset. The colour 
histogram (that was calculated by found landmark) 
can characterise the memorised landmarks. 
Individual colours classifying can be reached  
in accordance to the ambient light levels by fuzzy  
control system. The advantage of fuzzy control 
versus conventional methods is the ability  
to synchronous control of multiple independent 
physical variables (Cviklovič, 2011). Landmark 
finding algorithm can find landmarks like flat objects 
with depth sensor help too. Found landmarks are 
presented by one pixel i.e. by centre of rectangular 
frame drawn around colour blob of landmark.

Remembered landmarks searching algorithm speed 
will be the dominant factor at algorithm choice 
(fuzzy control). If the image processing speed 
decreases or the response time increases, captured 
image size (resolution) will be decreased on RGB 
camera device. 

Information about the key point’s (landmark’s) 
distance is allocated at xfinal, yfinal co ordinates  
of the depth image pixel. The xfinal, yfinal co ordinates 
are necessary to calculate (5) and (6) for correct 

pixel identification in the depth picture:

xfinal = Rx
  * xlandmark (5)

yfinal = Ry * ylandmark (6)

where: 

xfinal, yfinal – corrected x and y co-ordinate of the 
landmark centre pixel on depth image;
Rx , Ry – calibration ratio for width and height (x, y 
co-ordinate ratio);
xland, yland – x and y co-ordinate of the recognized 
landmark centre;

The result of the final pixel’s co-ordinate 
calculation must be integer value, so these values 
will be rounded and converted to data type 
Int32. The space (distance) between the camera  
and the landmark is directly characterized  
in millimetres by pixel’s depth information. 
Practically, the algorithm creates a three 
dimensional array with structure [X coordinate,  
Y coordinate, Depth] for each final colour pixel,  
i.e. for each landmark centre pixel. 
Only two landmarks (point A and B on Figure 2)  
are enough to determine the relative position  
of the mobile robot in the environment. But it is 
necessary to find another one landmark for reserve, 
just in case, if one landmark drops off from two.
At the beginning of mobile robot localization,  
the algorithm found landmark points (method was 
descripted upper). Each of this point was found  
at different distance, but the colour camera 
represents these points as points in one plain  
(Figure 2). The next step was to calculate  
the sizes of angles αA and αB by counting horizontal 
pixels from the centre of the colour frame  
to the landmark points. These angles helped  
to determine perpendicular distances dVA (9)  
and dVB (10).

Source: own processing
Figure 2: Illustration of calculated angles and distances on 2D frame.
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Next formulas (7) (8) helped to calculate 
perpendicular distance dxA between the A point  
and perpendicular distance dxB between the B point 
and the axis of the colour camera (figure 2). There 
was needed to measure not only angle, but also  
the distances dMA and dMB by MS® Kinect depth 
sensor.

dxA = dMA . sinαA (7)

dxB = dMB . sinαB (8)

Parameters dVA (9) and dVB (10) represented  
the perpendicular distances of each one landmark 
point from the colour camera sight.

dVB = dMB . cosαB  (9)

dVA = dMA . cosαA (10)

Furthermore, if some application needs the 
elevation of landmark points in the environment, 
parameters dyA (11) and dyB (12) characterise these 
values.

dyA = dVA . tgβA  (11)

dyB = dVB . tgβB  (12)

Sum of dxA and dxB did not give real distance 
between A and B landmark, caused by plain  
of 2D colour camera frame (Figure 3). For this 
reason, the real distance of two landmarks A and B 
are calculated by next formula (13):

  (13)

Source: own processing
Figure 3: Typified real situation of camera, depth 

sensor and landmark points from above.

Also it was possible to enumerate the angle of shift 
ω of MS® Kinect sensor system plain and vertical 
line to the AB abscissa (14). This angle represented 
the real angle of shift of the mobile robot (camera) 
to landmarks. The turn direction of the AB 
abscissa from the camera plan is possible to sense  
by the result of the formula 15. If the result is 
negative number (the A landmark is far away),  
the mobile robot is on the right side  
of the perpendicular axis of the AB abscissa  
and vice-versa.

  (14)

Dir(L+R-) = dVA - dVB  (15)

The main algorithm remembers all of calculated 
parameters for each of found landmark (point), 
and consequently the algorithm applicate 
these parameters to localize the mobile robot.  
If the mobile robot moves to another position, 
algorithm determines distances and angles  
to remembered landmarks (points) again.

Finally, the difference of remembered values  
and last measured (actual) values gives the relative 
position of the mobile robot in the environment 
(Figure 4) with reference to landmark points. Vector 
ε represents the trajectory of the mobile robot (16):

   (16)

Source: own processing
Figure 4:  Determination of the mobile robot’s relative position 

between two points P1 and P2
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Results of the landmark finding algorithm  
for indoor localization are showed in stages: MS® 
Kinect colour camera output (Figure 5), landmark 
finding algorithm output (Figure 6), calibration 

algorithm output (Figure 7), depth sensor output 
(Figure  8),  depth measurement correction - error 
filtration algorithm output (Figure  9) and landmark 
points-angles finding algorithm output (Figure  10).

Source: own processing
Figure 5: Output from MS® Kinect RGB camera (original 

frame).

Source: own processing
Figure 6:  Landmark finding algorithm (from RGB camera 

frame)

Source: own processing
Figure 7:  Result of RGB camera and depth sensor calibration 

algorithm and landmarks.

Source: own processing
Figure 8: Output from MS® Kinect Depth sensor (original 

frame).

Source: own processing
Figure 9: Depth measurement correction - error filtration 

algorithm (corrected frame).

Source: own processing
Figure 10:  Landmark point angles finding algorithm (join  

of RGB calibrated frame, found landmarks data, and corrected 
depth frame information). 
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The algorithms were tested on our six wheel drive 
mobile robot prototype NUC v1.1 with MS® 
Kinect, light intensity sensor and Hokuyo URG 
LX-04 2D laser rangefinder indoor (Figure 11). 
All algorithms were run on Intel NUC mini PC  
with integrated Intel i5 CPU and integrated Intel 
GPU on motherboard with 8GB RAM.

Finally, a simple framerate measuring algorithm 
was created for evaluation of achieved colour 
image processing speed by the landmark finding 
algorithm and the achieved framerate of the mobile 
robot localization in the environment. After the 
landmark finding algorithm function test the 
framerate of image processing (landmark finding)  
and localization was at more structured environment 
2 fps (laboratory) and at less structured environment 
4fps (hallway).

Conclusion
The paper describes the knowledge of the mobile 
robot relative localization by using landmark 
finding algorithms and some algorithms for input 
information correction (error filtration) in an indoor 
environment or in a dark external agriculture 
environment. The main aim of this project was 
to create and design the basic landmarks finding 
algorithms, for mobile robot localization. This 
algorithm is applicable only on moving object, 
because, it is necessary to change the position  
to localize the robot. 

The total error of localization mainly depends  
on resolution of the colour camera, because angles 
are calculated from reckoned frame pixels. Error 

can occur, in case when landmarks start moving. 
Some error situation can occur, when sensors 
cannot measure distances precisely due to shining 
materials like mirror, glazed surface or glass. 
Thereby, some additional distance measuring 
sensors are needed to be supplemented in future that 
are based on measuring another physical quantity. 
For this purpose it is possible to use ultrasound 
sensors with tight flaring angle or additional laser 
rangefinder. Also an additional odometry based 
algorithm may be used to localize the mobile 
robot in the next movements. However we want 
to increase the accuracy of localization, it is able 
to use feedback from MS® Kinect’s three axis 
accelerometers.  In case of information feedback 
from the localization process, it is possible to use 
the advantages of inertial navigation, because  
the information about the position could be 
obtained through the acceleration and gyro data 
from accelerometers and gyroscopes (Cviklovič 
et al., 2011). If the concrete application needs  
the precise mobile robot information  
about direction, an additional gyroscopic sensor 
can be used with the Cviklovič’s (2013) method  
of calibration to achieve tolerance of ±0.5 degree.

The framerate of landmark finding algorithm 
depended on environment structure, so 2 to 4fps 
was reached that is enough to localize mobile 
robot only up to speed 0,3 m.s-1. Vaz, M. (2015) 
has described a faster localization algorithm 
that using a particle filter fusing the odometry  
with a novel observation model reflecting  
the quality of the match between the ground edges 
and the nearest obstacles for localization. 

Source: own processing
Figure 11: Created six wheel drive mobile robot prototype NUC v1.1 with MS® 

Kinect, Laser rangefinder and light sensor.
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These algorithms are primarily created for actual  
indoor autonomous mobile robot NUC  
and for future development of an autonomous 
agronomical mobile robot control in the agrarian 
sector. In regard of an external agricultural 
environment, sunlight is the limiting factor  
for depth camera sensor. The depth camera sensor 
works on constantly defined wavelength laser 
beams projected to the environment. The sunlight 
interference with these beams and thereby depth 
sensor cannot acquire the distances. The solution is 
the usage of the MS® Kinect at night with its enabled 
colour camera night vision function. Especially, 
application of this landmark finding algorithm 
for localization is suitable for small agricultural 
devices that are moving in agrarian sector between 
i.e. maize rows, vine yards or cornfield only  
at night. These localization algorithms are ideal  
for lawn movers too that are mowing the grass  
in the home gardens at cloudy weather. 

One of the most suitable tasks for this landmark 
finding algorithm is spraying with the airblast 
sprayer between fruit trees or wine grapes. In this  
case, the main benefit of this algorithm is 
increasing the health and safety at workspace, 
because workers do not need to drive the sprayer 
tractor and meanwhile breathe the pesticides.  
The whole sprayer system could work autonomously 
with appropriate electro-mechanical actuating 
devices installed on agricultural machine. 

Advantages of landmark finding algorithm  
for localization could be used in conjunction  
with precise fertilization research works too, 
where every single plant obtains only necessary 
amount of soil conditioner in dependence on plant 
nutrient index. Every coordinate of fertilized plants  
or places in row could be remembered and used  
to build a precise agrarian nutrient map.
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