
[61]

Agris on-line Papers in Economics and Informatics

Volume XV Number 1, 2023

Developing an Efficient System with Mask R-CNN for Agricultural
Applications
Brahim Jabir, Khalid El Moutaouakil, Noureddine Falih

LIMATI, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract
In order to meet the world's demand for food production, farmers and producers have improved and increased
their agricultural production capabilities, leading to a profit acceleration in the field. However, this growth
has also caused significant environmental damage due to the widespread use of herbicides. Weeds competing
with crops result in lower crop yields and a 30% increase in losses. To rationalize the use of these herbicides,
it would be more effective to detect the presence of weeds before application, allowing for the selection
of the appropriate herbicide and application only in areas where weeds are present. The focus of this paper is
to define a pipeline for detecting weeds in images through the use of a Mask R-CNN-based weed classification
and segmentation module. The model was initially trained locally on our machine, but limitations and issues
with training time prompted the team to switch to cloud solutions for training.

Keywords
Deep learning, CNN, Mask R-CNN, precision agriculture, weed detection.

Jabir, B., Moutaouakil, K. E. and Falih, N. (2023) "Developing an Efficient System with Mask R-CNN
for Agricultural Applications", AGRIS on-line Papers in Economics and Informatics, Vol. 15, No. 1,
pp. 61-72. ISSN 1804-1930. DOI 10.7160/aol.2023.150105.

Introduction
Agriculture is a crucial sector in Morocco, providing
livelihoods for millions of people, especially
in rural areas with limited industrial activity.
Sustainable agriculture practices, including soil
conservation, environmental resource management,
and biodiversity protection, are essential for overall
rural development. With over 4 million jobs,
agriculture is one of the most important drivers
of Morocco's economy (Jabir et al., 2021).

Precision Agriculture is an innovative approach
that leverages technologies and data to optimize
crop management strategies, such as fertilizer
inputs, irrigation, and pesticide use. It involves
collecting field data, analyzing the information, and
making informed decisions to improve crop yields
and reduce costs (Tiwari and Jaga, 2012). Site-
specific weed management is a key component
of Precision Agriculture that aims to reduce herbicide
usage, improve weed control, and minimize
environmental pollution (Fernández‐Quintanilla
et al., 2018). Weeds are a major challenge
for farmers, as they compete with crops
for resources and can lead to reduced yields.
Chemical weed control is the most common
approach, but the use of herbicides is increasingly

being scrutinized due to environmental concerns.
Therefore, it is important for farmers to inspect
their fields and apply only the necessary amount
of herbicides. This manual process is time-
consuming, and an automated solution is needed
to streamline the workflow.

In this study, we propose a pipeline for detecting
and masking weeds in images. The images undergo
preprocessing and are fed into a Mask R-CNN
model. The training stage involves exploring two
approaches: local training using local resources
on our machine, and cloud-based training using
remote resources. Finally, both approaches are
compared and evaluated based on time and memory
allocation. The framework acts as a feature extractor,
capable of discovering complex patterns in the data
that are then inputted into a multi-class classifier
for classification and instance segmentation.

The structure of this paper is organized as follows:
we start by discussing the basics of Convolutional
Neural Network (CNN) and the algorithms
used in our study. Then, we present the datasets
and tools used in our implementation of the Mask
R-CNN algorithm. After that, we describe
the implementation process and the two approaches
to training our model - local training using

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[62]

local resources and cloud-based training using
remote resources. Next, we present the results
and discussion, evaluating the performance of our
model and comparing the results obtained from both
training approaches. Finally, we conclude our study
by summarizing our findings and offering insights
into the potential of this approach for future work
in precision agriculture.

Materials and methods
The Convolutional Neural Network (CNN)
is a widely used Deep Learning algorithm,
particularly in image classification. CNNs work
by attributing significance (weights and learnable
biases) to objects in an input image, enabling
their differentiation from one another (Sewak
et al., 2020). The structure of the CNN is modeled
after the human brain's neuron connectivity
and is inspired by the regulation of the visual cortex.
Just like in the human brain, individual neurons
in a CNN only respond to stimuli within a restricted
area of the visual field, known as the receptive
field. The combination of these fields covers
the entire visible area. In computer vision,
a grayscale image is represented as a two-
dimensional array of pixel values, with brightness
ranging from 0 to 255. 0 indicates black,
255 indicates white, and all other values are shades
of gray. Color images are represented by a third
dimension of depth, with 3 values representing
the fundamental colors Red, Green, and Blue
(Jabir et al., 2021). Simply put, what a CNN does
is extract features from an image and convert it
into a lower dimension representation, while
preserving its characteristics, by passing the image
through a set of layers that define the algorithm's
architecture.

As Figure 1 shows, an input image is passed
into the input layer. The image will be handled
by the Convolutional layer to extract the features
of the image, but you are probably wondering
how this convolution operation actually
relates to feature extraction. First of all, a part
of the image is connected to the Convolutional layer
to perform convolution operation and calculates
the dot product between the receptive field (it is
a local region of the input image that has the same
size as that of filter) and the filter which is formed
from a set of weights. The output of the process is
a one-number integer of the volume of the output.
Then, we slide the filter to the following receptive
field of the same entry image by one pitch
and do the same operation again. We will repeat
the same process repeatedly until we have traversed

the entire image. The result called the convolution
maps will be the input to the subsequent layer.

Source: (Jabir et al., 2021).
Figure 1: Standard architecture of a CNN.

After the feature extraction, an activation
function called ReLU (y = max(x, 0)) is applied
on the convolution map to handle highly non-linear
data. The ReLU function inputs any real number
and sets all values less than zero to zero, while
keeping values greater than zero unchanged (Zhu
et al., 2020). The pooling layer is then used to reduce
the size of the input image after convolution. Multiple
convolutional layers and one pooling layer may
be used before the fully connected layer performs
classification. The last layer of the CNN is either
the Softmax or the Logistic layer, which is located
at the end of the fully connected layer. Logistic is
used for binary classification and Softmax is used
for multi-classification (Khachnaoui et al., 2020).
Transfer learning is a machine learning technique
where a model trained for one task is reused
as the basis for a model in a different task. This is
a popular method in deep learning, where
pre-trained models can serve as starting points
for computer vision and natural language processing
tasks due to the vast computing resources and
time required to build neural network models
(Hoo-Chang et al., 2016).

R-CNN

The R-CNN merges the region proposal
with the CNN, based on the principle that a single
object of interest would dominate in a particular
region. This is achieved by using a selective search
algorithm to generate category-independent region
proposals, which retrieves approximately 2000
proposals. Each proposal is then warped and passed
to a large convolutional neural network that acts
as a feature extractor, producing a fixed-length
feature vector from each region. The R-CNN extracts
a 4096-dimensional feature vector from each region
proposal, as shown in Figure 2. Subsequently,
a Support Vector Machine (SVM) is applied
to the features extracted from the CNN to rank
the objects in each region. Finally, regression is used
to predict the four bounding box values necessary
for object detection (Hoeser and Kuenzer, 2020).

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[63]

Source: Author’s illustration
Figure 2: R-CNN: Regions with CNN features.

Fast R-CNN

Fast R-CNN is an improved version of R-CNN
with a few changes. It replaces the resizing
operation with a RoI pooling layer to obtain a fixed-
size feature map. Secondly, it replaces the SVM
with fully connected layers responsible
for classification and bounding-box regression,
while the region proposal is still based on selective
search. Fast R-CNN takes as input an image
and a set of object proposals and uses convolutional
and max pooling to produce a convolutional feature
map. For each object proposal, Fast R-CNN extracts
a fixed-length feature vector from the feature map
using a region of interest (RoI). Each feature vector
is fed into a fully connected network with two
sibling output layers: the first one produces softmax
probability estimates over K object classes plus
a catch-all “background” class, while the second
one gives the four real values for the bounding-box
positions for the K classes (Han et al., 2022).

Faster R-CNN

Faster R-CNN is an object detection system
that consists of two modules: the first is a fully
convolutional network responsible for proposing
regions, and the second is a Fast R-CNN detector
that uses the image and region proposals to give
object classification and bounding-box positions
(as shown in Figure 3). Faster R-CNN is a single,
unified network for object detection.

Source: Author’s illustration
Figure 3: Fast R-CNN architecture.

With the addition of the Region Proposal Network
(RPN) module, Faster R-CNN is able to determine

precisely where to look, which is a key advantage
of Faster R-CNN (as shown in Figure 4).

Source: (Rajeshwari g et al., 2019).
Figure 4: Faster R-CNN (single, unified network for object

detection).

Mask R-CNN

Mask R-CNN is a state-of-the-art object detection
and instance segmentation model developed
by Facebook using Python. It extends Faster
R-CNN by adding a mask prediction branch to its
final stage (Liu et al., 2022). As shown in Figure 5,
Mask R-CNN has three outputs: class label,
bounding-box offset, and an object mask. The ROI
pooling layer in Faster R-CNN has been replaced
with the ROI Align layer, which performs better
in mask prediction. Mask R-CNN is divided
into two parts: the backbone, responsible
for feature extraction, and the head of the network,
which performs classification, regression, and mask
prediction. Mask R-CNN is built on the Feature
Pyramid Network (FPN) and uses RestNet101
as its backbone. Unlike traditional models that
use a single feature map, FPN architecture utilizes
features from multiple convolution layers to provide
a better prediction (Lin et al., 2021). The network
head classifies the proposed RPN bounding box and
generates the segmentation mask. In the training
stage, Mask R-CNN employs transfer learning
by using pre-trained weights from the MS COCO
dataset, which has 80 classes and 115,000 training
images (Lin et al., 2018).

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[64]

Source: Author’s illustration
Figure 5: The architecture of the Mask R-CNN.

Dataset

The main dataset used by Mask R-CNN is
an MS COCO dataset, which has 80 classes
and one hundred fifteen thousand training
images. Evaluation metrics for bounding boxes
and segmentation mask is based on Intersection
over Union. The pretend weights learned on MS
COCO dataset are used such as pre-trained
weights to train our model with our own datasets.
The dataset we use is composed of 150 images,
after the augmentation it became a 300 images. We
divided our dataset used in this study to three sets,
the first one consisting of 200 image for treating
our model, the second one include 20 images
for he validation and the last one be composed
of 80 images for testing. All the images that are
used in the study are pictures of weeds found
in the fields and the corps in Morocco (Timpanaro
et al., 2021).

Data augmentation

After the step of collecting images for our study. We
need to ensure we have a wide variation in angles,
brightness, scale, etc. and to make sure, there are
a several data augmentation techniques, In our
case we increase the amount of images by adding
slightly modified copies of already existing images
by adjusting the capture angles and brightness.
This process used mostly in the case we have only
small data sets to train our Deep learning models.
The objective behind feeding the model with varied
data is to improve the overall training procedure
and performance generalization purposes (Shorten
and Khoshgoftaar, 2019).

Data pre-processing

Our study involved some image pre-processing
steps, before the image or particular characteristics /
features / statistics of the image were fed as an input
to the DL model. Our pre-processing procedure
was creating pixel level mask annotations to define
the boundaries of the objects in the dataset (Huang
et al., 2021). Among various available tools, we
choose an intuitive and well-done tool: VGG
Image Annotator (VIA) (see the Figure 6). This

tool does not need any installation; we lunch it
via html file with a modern browser. The output
of pre-processing step will be an annotated dataset
and a JSON files include the annotation’s metadata
for the annotation for both training and validation
datasets. This operation take approximately
420 min to manually annotate all image,
by the average of a minute and a half for each image
separately.

Source: Author’s illustration
Figure 6: Image annotation.

The model architecture

The Mask R-CNN framework consists of two stages.
In the first stage, the framework inputs an image
and uses a Region Proposal Network (RPN)
to identify potential object regions. The second stage
then predicts the classes, refines the bounding boxes,
and generates segmentation masks for each object.
In the Mask R-CNN system, the convolutional
backbone is composed of the backbone network,
region proposal network, and object classification
module. The network head includes the boundary
box regression module and the mask segmentation
module. An input image is transformed
into a feature map through the backbone network,
a standardized convolutional neural network (CNN)
that extracts features. The feature map is then used
as input for the RPN to detect potential object areas.
The feature extraction step is based on the original
implementation of Faster R-CNN with ResNet-101
(Lei and Sui, 2019).

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[65]

Source: Author’s compilation
Figure 7: Backbone of Mask R-CNN.

The ResNet-101 architecture, as shown in Figure 8,
includes a total of 104 convolutional layers.
It is comprised of 33 blocks of layers, with 29
of these blocks utilizing the output of the previous
block as a direct input via residual connections.
The remaining 4 blocks perform an additional
operation of a 1x1 convolution layer with a stride
of 1 followed by batch normalization before being
added to the output of the previous block. The Mask
R-CNN framework extends the Faster R-CNN box
heads from ResNet and FPN by adding a fully
convolutional mask prediction branch as part of its
network head (Hafiz and Bhat, 2020).

Source: Author’s compilation
Figure 8: The head's layers.

Implementation

This section defines the environment requirements
for implementing Mask R-CNN in this study.
We use Python 3.6 as the programming language
and the TensorFlow and Keras libraries for learning
and classification (Yang et al., 2020). To enhance
the model's performance, we employ simple
and effective techniques such as data augmentation
and use Tensorboard for log visualization.

TensorFlow

TensorFlow is an open-source machine learning
library developed by Google for developing
and running machine learning and deep learning
applications. Its name is derived from the fact
that operations in neural networks are primarily
performed on multi-dimensional data tables, called
tensors. A two-dimensional tensor is equivalent
to a matrix. In this study, we use TensorFlow 1.15
for local training on our machine and Tensorflow-
GPU 1.5 for cloud training.

Keras

Keras is an open-source library written in Python
(under the MIT license) based on the work of Google
developer François Chollet as part of the ONEIROS
(Open-ended Neuro-Electronic Intelligent
Robot Operating System) project. The library's
goal is to allow the rapid constitution of neural
networks, serving as an application programming
interface (API) for accessing and programming
various machine learning frameworks (Wäldchen
and Mäder, 2018). In this study, we use Keras 2.2.5.

Tensorboard

Tensorboard is a visualization tool for understanding,
debugging, and optimizing TensorFlow programs.
It visualizes the TensorFlow graph, plots
quantitative metrics about the execution
of the graph, and displays additional data.

Training

The training can be carried out at two levels.
At the first level, only the heads can be trained
by freezing all the backbone layers and training
only the newly initialized layers, not using
pre-trained weights from MS COCO. The second
level involves training all layers of the entire model.

For this study, it is not necessary to train the model
fully since the starting point is COCO-trained
weights. Moreover, with a small dataset
of 300 images, consisting of 200 for training
and 20 for validation, it is not necessary to train

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[66]

all layers, as it would consume a lot of time. Just
training the heads should suffice.

CPU vs GPU

The central processing unit (CPU) is the main
component that performs arithmetic, logic,
and control for every computer. Its main function
is to execute instructions stored in the computer's
memory in a sequential manner. The CPU plays
a critical role in neural network computation
because it handles general arithmetic calculations
during the learning phase. CPUs are usually built
with several powerful processing cores that are
clocked between 2 and 3 GHz, making them ideal
for performing sequential tasks (Padilha and
Lucena, 2020). Additionally, the CPU independently
of the GPU’s computation role (Pang et al., 2020),
such as loading training data, handles all input/
output operations during the learning phase. Due
to these tasks, training a large model using the CPU
can be risky and time-consuming, which is why
using the GPU instead of the CPU in the training
stage is seen as beneficial.

The graphics processing unit (GPU), like
the CPU, is a component of a computer used
to process instructions, but the GPU can run
multiple instructions simultaneously through
parallelization. A GPU typically consists
of multiple weak processing cores with a much
lower clock speed compared to the CPU. This
multiple processing core system was developed
to parallelize computations through the use
of threads, thus speeding up computations that
would normally take a longer time on the CPU.

Since the GPU has the ability to run many
processes simultaneously, it is useful for training
neural networks that involve computationally
intensive matrix multiplications. Training a neural
network requires a large number of computations,
and the GPU optimizes these computations
using multiple memory channels and streaming
processors (Thao et al., 2021).

Originally, GPUs were designed for rendering
graphics. As a result, executing custom code
on the GPU requires APIs that provide a higher
level of abstraction, from low-level to high-level
programming languages. CUDA was developed
to utilize the GPU architecture's parallelism
capabilities, such as multithreading, MIMD, SIMD,
and instruction level, through low-level instructions
(Carneiro Pessoa et al., 2018). TensorFlow,

in conjunction with CUDA, can use the entire GPU
architecture to further optimize computation time.

Train the algorithm locally on our machine

 In our study, we trained the model using a machine
with the following configuration: an Intel Core
i5-2520M CPU @2.50 GHz and 8GB of RAM.
The training took approximately 7 hours for 10
epochs, with an average of 2100 seconds per epoch
(Figure 9). Each epoch consisted of 60 training
batches and a prediction threshold of 0.9.
The training loss was 0.6350 and the validation loss
was 0.9447. Despite having a small training dataset,
the model still achieved a decent level of accuracy.

Source: Author’s compilation
Figure 9: Train the algorithm locally on a machine.

In our dataset, we found various species of weeds
with different sizes and shapes. The images
in the dataset were of different sizes, so we resized
them to 512 X 512 pixels. Then, we created
two paths, one for the test dataset and another
for the validation dataset. After that, we set
up our model by extending the Dataset class
and the Config class, which exist in the mrcnn
folder, and configured it. Finally, we started
the training. In the above model shown in Figure 9,

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[67]

we trained a model for binary classification.
However, to differentiate between weeds and crops
with more precision, we decided to make the model
larger and give it more classes. Therefore, we
expanded our dataset by adding new weed species
and crop types, such as sugar beet and wheat, which
comprised almost 620 images. After preparing
the new dataset, we re-trained the model with it.

Source: Author’s compilation
Figure 10: The model is being retrained locally on our machine.

This time, the model took longer to train,
approximately two hours more than the previous
training. It took approximately 9 hours for 10
epochs, with an average of 2400 seconds per epoch
(as shown in Figure 10). Each epoch consisted
of 60 training batches and had a prediction
threshold of 0.9. The training loss was 0.6350
and the validation loss was 0.9447. Training
the model on our machine requires more resources
and performance optimization to improve accuracy
and reduce the training time.

Training the model on the cloud

Using cloud computing for deep learning simplifies
the integration and management of large datasets
for training algorithms. Deep learning models
can then be efficiently and cost-effectively scaled
using the processing power of GPUs. The cloud
optimizes network distribution, enabling faster
design, development, and training of deep learning
applications. The use of the cloud offers several
advantages, such as:

Speed: Deep learning algorithms are designed
for fast learning. By utilizing GPU and CPU
clusters for complex matrix operations, users can
speed up the training of deep learning models.
These models can handle large amounts of data and
provide increasingly relevant results.

Scalability: Deep learning neural networks are ideal
for running on multiple processors and distributing
workloads across different types and amounts

of processors. The cloud provides a wide range
of on-demand resources, enabling the deployment
of virtually unlimited resources to build deep
learning models of any size.

Flexibility: Deep learning frameworks such
as Apache MXNet, TensorFlow, Microsoft's
Cognitive Toolkit, Caffe, Caffe2, Theano, Torch,
and Keras can be run in the cloud, allowing you
to choose the set of deep learning algorithm libraries
that best fit your use case, whether it involves web,
mobile, or connected devices.

There are several platforms and servers available
for training remote models, including:

Amazon Web Services (AWS): AWS offers
over a hundred services that fall into categories
such as compute, storage, database, developer
tools, security and identity, analytics, artificial
intelligence, and more. New customers are eligible
for 12 months of free use with certain restrictions
and limitations. Any usage beyond these limitations
must be purchased. For example, they offer
a Remote Desktop Protocol with 30 GB of storage,
2 GB of RAM, and 1 CPU for free. Additional
resources, such as GPUs, must be purchased.

Google Colab: In recent years, Google Colab
has become a popular choice for an end-to-end
machine learning platform. It provides free GPU,
CPU, storage, and RAM, but also has limitations.
Some of the downsides of Google Colab include
service interruptions, slow storage, unconfigured
environments, and limited functionality (12 hours
of interactive use).

Kaggle: Kaggle, another Google product, is a web-
based platform that hosts data science contests.
It offers an end-to-end machine learning platform
with features similar to Colab, including free
Jupyter notebooks and GPUs. Kaggle also provides
many pre-installed Python packages, making
it easier for some users to start.

Paperspace Gradient: Gradient is the solution
we utilized in this study. An end-to-end platform
offers a free-hosted Jupyter notebook cloud
service with several options for pre-configured
environments and free access to GPUs and CPUs.
Gradient makes it easy to build, train, and deploy
deep learning models, with a web-based user
interface, a CLI, and an SDK. It appeals to both
beginners and experts alike, with a user-friendly
interface and low entry barrier. Some of the benefits
of Gradient over other solutions are:

Faster, persistent storage, eliminating the need

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[68]

to re-install libraries and re-download files each
time you start your notebook.

Guaranteed sessions, reducing the risk of having
your instance shut down mid-work. You can log out
and come back later to find your session unchanged.

Pre-configured containers and templates,
including popular environments with pre-installed
dependencies (such as PyTorch, TensorFlow,
or the Data Science Stack) or the option to use
a custom container. There is also an ML showcase
with sample projects that you can create and run
free on your account.

A public dataset repository with a wide range
of popular datasets available for free use
and mounted on every notebook.

The ability to easily scale up and add more
storage and high-end dedicated GPUs for the same
environment as needed.

In this study, we will use the free environment
offered by Gradient. It provides two options:
the first offers access to 2 GB of RAM, 2 CPUs,
and no GPU (Figure 11), with a runtime of 12
hours without interruption. The second option
provides access to 30 GB of RAM, 8 CPUs,
an Nvidia Quadro M4000 GPU, and a runtime
of 6 hours without interruption. We have chosen
to work with the second option.

Source: AWS Cloud (2022)
Figure 11: The training environment (Cloud).

We will start by taking the same dataset and model
used in the second local training and re-run
the training on the cloud. This time, it took
around 28 minutes for 10 epochs, with an average
of 170 seconds per epoch, 60 training batches,
and a threshold of 0.9 for prediction. The training
loss was 0.8406, and the validation loss was 0.964.

To decrease the loss, we increased the number
of training batches to 100 and retrained the model.
This time, the model took 45 minutes for 10 epochs,
with an average of 280 seconds per epoch

and 100 training batches, with a prediction
threshold of 0.9. The training loss was 0.6896
and the validation loss was 0.9113. However,
as the loss was still high, we retrained the model
again, this time with 40 epochs, 100 training
batches per epoch, and a prediction threshold of 0.9.
The training loss reached 0.2871, while
the validation loss was 0.9663 (Figure 12). This
time, the model took almost 3 hour.

Source: Author’s compilation
Figure 12: Training the model on a Gradient server (in the cloud).

Results and discussion
In this section, we will examine the results
obtained during the training of our model, evaluate
its performance, and demonstrate its prediction
on sample data from the test dataset in the inference
stage. Evaluating a deep learning model is a crucial
step in any project process as it allows us to assess
the accuracy and performance of the model. There
are various parameters and metrics that can be used
for evaluation. In our study, we will use logarithmic
loss as our evaluation parameter.

Logarithmic loss, also known as log loss, is
a suitable metric for multi-class classification.
It penalizes false classifications by requiring
the model to attribute a probability to each class
for all samples. If we have N samples belonging
to M classes, the log loss is calculated as follows:

Where,

yij, indicates whether sample i belongs to class j
or not

pij, indicates the probability of sample i belonging
to class j

The log loss has no upper limit and exists
in the range [0, ∞). A log loss closer to 0 would
indicate higher accuracy, while if the log loss is
away from 0, it will indicate less accuracy.

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[69]

In general, decreasing the log loss will give a better
accuracy for the classifier.

The goal of training a model is to find a set
of weights and biases that have low Loss,
on average, across all examples.

In Mask R-CNN we have 5 small principle losses,
each one has a specific signification, and the figures
below Losses obtained as a result of training, it can
be accessed through the use of Tensorboard:

	- rpn_class_loss: How well the Region
Proposal Network separates background
with objetcs.

	- mrcnn_bbox_loss: How well the Mask
RCNN localize objects.

	- mrcnn_class_loss: How well the Mask
RCNN recognize each class of object.

	- mrcnn_mask_loss: How well the Mask
RCNN segment objects.

We use thus losses to calculate a big Loss:
A combination (surely an addition) of all
the smaller losses.

Source: Author’s compilation
Figure 13: The model loss during cloud training.

Source: Author’s compilation
Figure 14: The model loss during local training.

After training the model both locally
and on the cloud, the results shown in Figures 13
and 14 indicate that cloud training is faster
and better. The loss reaches 0.26 in the last
epoch. However, it is evident that 10 epochs are
not enough to train the model effectively, as seen
in the reduction of the loss rate after epoch 13.
This is because the model starts to memorize
the input data rather than learn the underlying
patterns, leading to overfitting. Hence, we will use
the weights obtained after epoch 13 for inference.

A comparison between local and cloud training
is summarized in Table 1. The first local training,
with a dataset of 300 images, 10 epochs,
and 60 batches, took 7 hours and resulted in a loss
of 0.848, indicating an inaccurate model.
In the second local training, the number
of images was increased to 620, and the training
time increased to 9 hours. However, the model
became more accurate. On the cloud,
with an environment offering 30 GB of RAM,
8 CPU, and GPU, the same model was trained
in 28 minutes with the parameters from the second
local training. The accuracy was not suitable,
so the number of epochs and batches was increased
to 40 and 100 respectively, which took 3 hours
to complete with a convincing precision.

Epoch Batches Dataset Duration Duration / epoch Duration / step Loss

Local 10 60 300 images 7 hours 2100 seconds 36 second 0.8486

Local 10 60 620 images 9 hours 2300 seconds 39 second 0.635

Cloud 10 60 620 images 28 minutes 170 seconds 2 seconds 0.8406

Cloud 10 100 620 images 45 minutes 280 seconds 3 seconds 0.6896

Cloud 40 100 620 images 3 hours 280 seconds 3 seconds 0.26

Source: Compiled by the authors
Table 1: Comparison of local model training and cloud model training.

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[70]

In this section, we will use the trained model
on the test dataset to predict the presence of weeds
or crops in images. We have integrated the trained
model into a web application developed using
Flask. The interface of the application includes
two buttons and an image frame as displayed
in Figure 15. The upper button enables users
to select an image, while the lower button allows
them to load the image onto the server.

Source: Author’s illustration
Figure 15: Home page.

After clicking the "Select Image" button (as shown
in Figure 16), a window will appear for selecting
the specific image to be used in the prediction
process.

Source: Author’s illustration
Figure 16: Upload image

After selecting the image, it can be viewed
in the frame. To start the prediction process,
the image must be uploaded to the server by clicking
the "Upload Image" button. Once the image has
been uploaded, the prediction can be initiated
by clicking the "launch Detection" button,
as depicted in Figure 17.

Source: Author’s illustration
Figure 17: Launch detection

At the end of the prediction process, the application
provides the result of the initial image
with a bounding box around the specific object
(if it exists) along with the name of the class
and the prediction probability. A mask is also
applied to detect the object boundaries, as depicted
in Figure 18. Users can start another prediction
by clicking on the "New Prediction" button.
The results shown in the images indicate that
the application, using the trained model, can
accurately detect and surround the grass in a short
amount of time, and if run on the cloud, the results
will be even faster.

Source: Author’s illustration
Figure 18: Result

Conclusion
The objective of this study was to create, train,
and optimize a Mask R-CNN model for weed
detection in images by comparing two training
approaches: local machine and cloud. The goal was
to achieve the highest accuracy and lowest loss
in predicting, segmenting, and identifying
the presence of common weeds in pictures.
The successful implementation of this model can
aid in optimizing herbicide use and controlling
the spread of weeds. However, this model is
limited to the images it was trained on and may

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[71]

not be applicable to all weed species or growing
conditions. Future work will aim to improve
the model by incorporating a hybrid approach,
incorporating additional data and increasing
the diversity of the training set. This has the
potential to further improve the accuracy of the
model and make it more applicable to a wider range
of use cases. The results of this study and future
work in this area could have important implications
for the agricultural industry, reducing environmental

damage and improving crop yields.

Acknowledgements
This research is part of a larger scientific project
supported by a group of doctors from the LIMATI
Laboratory at Sultan Moulay Slimane University
in Morocco. The general topic of the project is
"Deep learning in agriculture."

Corresponding author:
Brahim Jabir
LIMATI, Sultan Moulay Slimane University
Av Med V, BP 591, Beni-Mellal 23000, Morocco
Phone: +212 639 08 05 91, E-mail: ibra.jabir@gmail.com

References
[1]	 Carneiro Pessoa, T., Gmys, J., de Carvalho Júnior, F. H., Melab, N. and Tuyttens, D. (2018) "GPU‐

accelerated backtracking using CUDA Dynamic Parallelism", Concurrency and Computation:
Practice and Experience, Vol. 30, No. 9, pp. 16-30. ISSN 1532-0626. DOI 10.1002/cpe.4374.

[2]	 Fernández‐Quintanilla, C., Peña, J. M., Andújar, D., Dorado, J., Ribeiro, A. and López‐Granados,
F. (2018) "Is the current state of the art of weed monitoring suitable for site‐specific weed
management in arable crops?", Weed Research, Vol. 58, No. 4, pp. 259-272. ISSN 0043-1737.
DOI 10.1111/wre.12307.

[3]	 Hafiz, A. M. and Bhat, G. M. (2020) "A survey on instance segmentation: state of the art",
International Journal of Multimedia Information Retrieval, Vol. 9, No. 3, pp. 171-189.
ISSN 2192-6611. DOI 10.1007/s13735-020-00195-x.

[4]	 Han, G., Huang, S., Ma, J., He, Y. and Chang, S. F. (2022) "Meta faster r-cnn: Towards accurate
few-shot object detection with attentive feature alignment", In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, No. 1, pp. 780-789. ISSN 2374-3468.
DOI 10.1609/aaai.v36i1.19959.

[5]	 Hoeser, T. and Kuenzer, C. (2020) "Object detection and image segmentation with deep learning
on earth observation data: A review-part i: Evolution and recent trends", Remote Sensing, Vol. 12,
No. 10, p. 1667. ISSN 2072-4292. DOI 10.3390/rs12101667.

[6]	 Huang, Z., Chen, H., Liu, B. and Wang, Z. (2021) "Semantic-guided attention refinement network
for salient object detection in optical remote sensing images", Remote Sensing, Vol. 13, No. 11,
p. 2163. ISSN 2072-4292. DOI 10.3390/rs13112163.

[7]	 Jabir, B., Falih, N., Sarih, A. and Tannouche, A. (2021) "A Strategic Analytics Using Convolutional
Neural Networks for Weed Identification in Sugar Beet Fields", AGRIS on-line Papers in Economics
and Informatics, Vol. 13, No. 1, pp. 49-57. ISSN 1804-1930. DOI 10.7160/aol.2021.130104.

[8]	 Jabir, B., Falih, N. and Rahmani, K. (2021) "Accuracy and Efficiency Comparison of Object
Detection Open-Source Models", International Journal of Online & Biomedical Engineering,
Vol. 17, No. 5. pp. 165-184. ISSN 2626-8493. DOI 10.3991/ijoe.v17i05.21833.

[9]	 Khachnaoui, H., Mabrouk, R. and Khlifa, N. (2020) "Machine learning and deep learning for clinical
data and PET/SPECT imaging in Parkinson's disease: a review", IET Image Processing, Vol. 14,
No. 16, pp. 4013-4026. ISSN 1751-9659. DOI 10.1049/iet-ipr.2020.1048.

[10]	 Lei, X. and Sui, Z. (2019) "Intelligent fault detection of high voltage line based on the Faster
R-CNN". Measurement, Vol. 138, No. 8, pp. 379-385. ISSN 02632241.
DOI 10.1016/j.measurement.2019.01.072.

Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global
Food Security

[72]

[11]	 Lin, C., Shi, Y., Zhang, J., Xie, C., Chen, W. and Chen, Y. (2021) "An anchor-free detector and R-CNN
integrated neural network architecture for environmental perception of urban roads", Proceedings
of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 235,
No. 12, pp. 2964-2973. ISSN 0954-4070. DOI 10.1177/09544070211004466.

[12]	 Liu, W., Shan, S., Chen, H., Wang, R., Sun, J. and Zhou, Z. (2022) "X-ray weld defect detection
based on AF-RCNN", Welding in the World, Vol. 66, No. 6, pp. 1165-1177. ISSN 0043-2288.
DOI 10.1007/s40194-022-01281-w.

[13]	 Nguyen, T. T., Wahib, M. and Takano, R. (2021) "Efficient MPI‐AllReduce for large‐scale deep
learning on GPU‐clusters", Concurrency and Computation: Practice and Experience, Vol. 33,
No. 12, p. e5574. ISSN 1532-0626. DOI 10.1002/cpe.5574.

[14]	 Padilha, T. P. P. and de Lucena, L. E. A. (2020) "A systematic review about use of tensorflow
for image classification and word embedding in the brazilian context", Academic Journal
on Computing, Engineering and Applied Mathematics, Vol. 1, No. 2, pp. 24-27. ISSN 2675-3588.
DOI 10.20873/uft.2675-3588.2020.v1n2.p24-27.

[15]	 Pang, B., Nijkamp, E. and Wu, Y. N. (2020) "Deep Learning with TensorFlow: A Review",
Journal of Educational and Behavioral Statistics, Vol. 45, No 2, pp. 227-248. ISSN 1076-9986.
DOI 10.3102/1076998619872761.

[16]	 Rajeshwari, P., Abhishek, P., Srikanth, P. and Vinod, T. (2019) "Object detection: an overview",
International Journal of Trend in Scientific Research and Development (IJTSRD), Vol. 3, No. 1,
pp. 1663-1665. ISSN 2456-6470. DOI 10.31142/ijtsrd23422.

[17]	 Sewak, M., Sahay, S. K. and Rathore, H. (2020) "An overview of deep learning architecture of deep
neural networks and autoencoders", Journal of Computational and Theoretical Nanoscience,
Vol. 17, No. 1, pp. 182-188. ISSN 1546-1955. DOI 10.1166/jctn.2020.8648.

[18]	 Shin, H.-Ch. Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.
and Summers, R. M. (2016) "Deep Convolutional Neural Networks for Computer-Aided Detection:
CNN Architectures, Dataset Characteristics and Transfer Learning", IEEE Transactions on Medical
Imaging, Vol. 35, No. 5., pp. 1285-1298. ISSN 0278-0062. DOI 10.1109/TMI.2016.2528162.

[19]	 Shorten, C. and Khoshgoftaar, T. M. (2019) "A survey on image data augmentation for deep learning",
Journal of Big Data, Vol. 6, No. 1, pp. 1-48. ISSN 2196-1115. DOI 10.1186/s40537-019-0197-0.

[20]	 Timpanaro, G., Urso, A., Foti, V. T. and Scuderi, A. (2021) "Economic Consequences of Invasive
Species in Ornamental Sector in Mediterranean Basin: An Application to Citrus Canker", AGRIS
on-line Papers in Economics and Informatics, Vol. 13, No. 1, pp. 131-149. ISSN 1804-1930.
DOI 10.7160/aol.2021.130110.

[21]	 Tiwari, A. and Jaga, P. K. (2012) "Precision farming in India - A review", Outlook on Agriculture,
Vol. 41, No. 2, pp. 139-143. ISSN 0030-7270. DOI 10.5367/oa.2012.0082.

[22]	 Wäldchen, J. and Mäder, P. (2018) "Machine learning for image based species identification",
Methods in Ecology and Evolution, Vol. 9, No. 11, pp. 2216-2225. ISSN 2041-210X.
DOI 10.1111/2041-210X.13075.

[23]	 Yang, Y., Hao, X., Zhang, L. and Ren, L. (2020) "Application of Scikit and Keras Libraries
for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy
(LIBS)", Sensors, Vol. 20, No. 5, p. 1393. ISSN 1424-8220. DOI 10.3390/s20051393.

[24]	 Zhu, D., Lu, S., Wang, M., Lin, J. and Wang, Z. (2020) "Efficient precision-adjustable architecture
for softmax function in deep learning", IEEE Transactions on Circuits and Systems II: Express
Briefs, Vol. 67, No 12, pp. 3382-3386. ISSN 1549-7747. DOI 10.1109/TCSII.2020.3002564.

