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Abstract
In order to meet the world's demand for food production, farmers and producers have improved and increased 
their agricultural production capabilities, leading to a profit acceleration in the field. However, this growth 
has also caused significant environmental damage due to the widespread use of herbicides. Weeds competing 
with crops result in lower crop yields and a 30% increase in losses. To rationalize the use of these herbicides, 
it would be more effective to detect the presence of weeds before application, allowing for the selection  
of the appropriate herbicide and application only in areas where weeds are present. The focus of this paper is 
to define a pipeline for detecting weeds in images through the use of a Mask R-CNN-based weed classification 
and segmentation module. The model was initially trained locally on our machine, but limitations and issues 
with training time prompted the team to switch to cloud solutions for training. 
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Introduction
Agriculture is a crucial sector in Morocco, providing 
livelihoods for millions of people, especially 
in rural areas with limited industrial activity. 
Sustainable agriculture practices, including soil 
conservation, environmental resource management, 
and biodiversity protection, are essential for overall 
rural development. With over 4 million jobs, 
agriculture is one of the most important drivers  
of Morocco's economy (Jabir et al., 2021).

Precision Agriculture is an innovative approach 
that leverages technologies and data to optimize 
crop management strategies, such as fertilizer 
inputs, irrigation, and pesticide use. It involves 
collecting field data, analyzing the information, and 
making informed decisions to improve crop yields  
and reduce costs (Tiwari and Jaga, 2012). Site-
specific weed management is a key component  
of Precision Agriculture that aims to reduce herbicide 
usage, improve weed control, and minimize 
environmental pollution (Fernández‐Quintanilla  
et al., 2018). Weeds are a major challenge  
for farmers, as they compete with crops  
for resources and can lead to reduced yields. 
Chemical weed control is the most common 
approach, but the use of herbicides is increasingly 

being scrutinized due to environmental concerns. 
Therefore, it is important for farmers to inspect 
their fields and apply only the necessary amount  
of herbicides. This manual process is time-
consuming, and an automated solution is needed  
to streamline the workflow.

In this study, we propose a pipeline for detecting 
and masking weeds in images. The images undergo 
preprocessing and are fed into a Mask R-CNN 
model. The training stage involves exploring two 
approaches: local training using local resources  
on our machine, and cloud-based training using 
remote resources. Finally, both approaches are 
compared and evaluated based on time and memory 
allocation. The framework acts as a feature extractor, 
capable of discovering complex patterns in the data 
that are then inputted into a multi-class classifier 
for classification and instance segmentation. 

The structure of this paper is organized as follows: 
we start by discussing the basics of Convolutional 
Neural Network (CNN) and the algorithms 
used in our study. Then, we present the datasets  
and tools used in our implementation of the Mask  
R-CNN algorithm. After that, we describe  
the implementation process and the two approaches 
to training our model - local training using 
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local resources and cloud-based training using 
remote resources. Next, we present the results  
and discussion, evaluating the performance of our 
model and comparing the results obtained from both 
training approaches. Finally, we conclude our study 
by summarizing our findings and offering insights 
into the potential of this approach for future work  
in precision agriculture.

Materials and methods
The Convolutional Neural Network (CNN) 
is a widely used Deep Learning algorithm, 
particularly in image classification. CNNs work 
by attributing significance (weights and learnable 
biases) to objects in an input image, enabling 
their differentiation from one another (Sewak  
et al., 2020). The structure of the CNN is modeled 
after the human brain's neuron connectivity  
and is inspired by the regulation of the visual cortex. 
Just like in the human brain, individual neurons  
in a CNN only respond to stimuli within a restricted 
area of the visual field, known as the receptive 
field. The combination of these fields covers  
the entire visible area. In computer vision,  
a grayscale image is represented as a two-
dimensional array of pixel values, with brightness 
ranging from 0 to 255. 0 indicates black,  
255 indicates white, and all other values are shades 
of gray. Color images are represented by a third 
dimension of depth, with 3 values representing  
the fundamental colors Red, Green, and Blue 
(Jabir et al., 2021). Simply put, what a CNN does 
is extract features from an image and convert it  
into a lower dimension representation, while 
preserving its characteristics, by passing the image 
through a set of layers that define the algorithm's 
architecture.

As Figure 1 shows, an input image is passed  
into the input layer. The image will be handled 
by the Convolutional layer to extract the features 
of the image, but you are probably wondering 
how this convolution operation actually 
relates to feature extraction. First of all, a part  
of the image is connected to the Convolutional layer 
to perform convolution operation and calculates  
the dot product between the receptive field (it is  
a local region of the input image that has the same 
size as that of filter) and the filter which is formed 
from a set of weights. The output of the process is 
a one-number integer of the volume of the output.  
Then, we slide the filter to the following receptive 
field of the same entry image by one pitch  
and do the same operation again. We will repeat  
the same process repeatedly until we have traversed 

the entire image. The result called the convolution 
maps will be the input to the subsequent layer.

Source: (Jabir et al., 2021).
Figure 1: Standard architecture of a CNN.

After the feature extraction, an activation 
function called ReLU (y = max(x, 0)) is applied  
on the convolution map to handle highly non-linear 
data. The ReLU function inputs any real number 
and sets all values less than zero to zero, while 
keeping values greater than zero unchanged (Zhu  
et al., 2020). The pooling layer is then used to reduce  
the size of the input image after convolution. Multiple 
convolutional layers and one pooling layer may 
be used before the fully connected layer performs 
classification. The last layer of the CNN is either 
the Softmax or the Logistic layer, which is located 
at the end of the fully connected layer. Logistic is 
used for binary classification and Softmax is used 
for multi-classification (Khachnaoui et al., 2020). 
Transfer learning is a machine learning technique 
where a model trained for one task is reused  
as the basis for a model in a different task. This is  
a popular method in deep learning, where  
pre-trained models can serve as starting points  
for computer vision and natural language processing 
tasks due to the vast computing resources and 
time required to build neural network models  
(Hoo-Chang et al., 2016).

R-CNN

The R-CNN merges the region proposal  
with the CNN, based on the principle that a single 
object of interest would dominate in a particular 
region. This is achieved by using a selective search 
algorithm to generate category-independent region 
proposals, which retrieves approximately 2000 
proposals. Each proposal is then warped and passed 
to a large convolutional neural network that acts  
as a feature extractor, producing a fixed-length 
feature vector from each region. The R-CNN extracts 
a 4096-dimensional feature vector from each region 
proposal, as shown in Figure 2. Subsequently,  
a Support Vector Machine (SVM) is applied  
to the features extracted from the CNN to rank  
the objects in each region. Finally, regression is used 
to predict the four bounding box values necessary 
for object detection (Hoeser and  Kuenzer, 2020).
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Source: Author’s illustration
Figure 2: R-CNN: Regions with CNN features.

Fast R-CNN

Fast R-CNN is an improved version of R-CNN  
with a few changes. It replaces the resizing 
operation with a RoI pooling layer to obtain a fixed-
size feature map. Secondly, it replaces the SVM  
with fully connected layers responsible  
for classification and bounding-box regression, 
while the region proposal is still based on selective 
search. Fast R-CNN takes as input an image  
and a set of object proposals and uses convolutional 
and max pooling to produce a convolutional feature 
map. For each object proposal, Fast R-CNN extracts 
a fixed-length feature vector from the feature map 
using a region of interest (RoI). Each feature vector 
is fed into a fully connected network with two 
sibling output layers: the first one produces softmax 
probability estimates over K object classes plus  
a catch-all “background” class, while the second 
one gives the four real values for the bounding-box 
positions for the K classes (Han et al., 2022).

Faster R-CNN

Faster R-CNN is an object detection system 
that consists of two modules: the first is a fully 
convolutional network responsible for proposing 
regions, and the second is a Fast R-CNN detector 
that uses the image and region proposals to give 
object classification and bounding-box positions 
(as shown in Figure 3). Faster R-CNN is a single, 
unified network for object detection.

Source: Author’s illustration
Figure 3: Fast R-CNN architecture.

With the addition of the Region Proposal Network 
(RPN) module, Faster R-CNN is able to determine 

precisely where to look, which is a key advantage 
of Faster R-CNN (as shown in Figure 4).

Source: (Rajeshwari g et al., 2019).
Figure 4: Faster R-CNN (single, unified network for object 

detection).

Mask R-CNN

Mask R-CNN is a state-of-the-art object detection 
and instance segmentation model developed  
by Facebook using Python. It extends Faster 
R-CNN by adding a mask prediction branch to its 
final stage (Liu et al., 2022). As shown in Figure 5,  
Mask R-CNN has three outputs: class label, 
bounding-box offset, and an object mask. The ROI 
pooling layer in Faster R-CNN has been replaced 
with the ROI Align layer, which performs better 
in mask prediction. Mask R-CNN is divided  
into two parts: the backbone, responsible  
for feature extraction, and the head of the network, 
which performs classification, regression, and mask 
prediction. Mask R-CNN is built on the Feature 
Pyramid Network (FPN) and uses RestNet101  
as its backbone. Unlike traditional models that 
use a single feature map, FPN architecture utilizes 
features from multiple convolution layers to provide 
a better prediction (Lin et al., 2021). The network 
head classifies the proposed RPN bounding box and 
generates the segmentation mask. In the training 
stage, Mask R-CNN employs transfer learning 
by using pre-trained weights from the MS COCO 
dataset, which has 80 classes and 115,000 training 
images (Lin et al., 2018).
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Source: Author’s illustration
Figure 5: The architecture of the Mask R-CNN.

Dataset

The main dataset used by Mask R-CNN is  
an MS COCO dataset, which has 80 classes  
and one hundred fifteen thousand training 
images.  Evaluation metrics for bounding boxes  
and segmentation mask is based on Intersection 
over Union. The pretend weights learned on MS  
COCO dataset are used such as pre-trained 
weights to train our model with our own datasets.  
The dataset we use is composed of 150 images, 
after the augmentation it became a 300 images. We 
divided our dataset used in this study to three sets, 
the first one consisting of 200 image for treating 
our model, the second one include 20 images  
for he validation and the last one be composed  
of 80 images for testing. All the images that are 
used in the study are pictures of weeds found  
in the fields and the corps in Morocco (Timpanaro 
et al., 2021).

Data augmentation

After the step of collecting images for our study. We 
need to ensure we have a wide variation in angles, 
brightness, scale, etc. and to make sure, there are 
a several data augmentation techniques, In our 
case we increase the amount of images by adding 
slightly modified copies of already existing images 
by adjusting the capture angles and brightness. 
This process used mostly in the case we have only 
small data sets to train our Deep learning models. 
The objective behind feeding the model with varied 
data is to improve the overall training procedure 
and performance generalization purposes (Shorten 
and Khoshgoftaar, 2019).

Data pre-processing

Our study involved some image pre-processing 
steps, before the image or particular characteristics / 
features / statistics of the image were fed as an input 
to the DL model. Our pre-processing procedure 
was creating pixel level mask annotations to define  
the boundaries of the objects in the dataset (Huang 
et al., 2021). Among various available tools, we 
choose an intuitive and well-done tool: VGG 
Image Annotator (VIA) (see the Figure 6). This 

tool does not need any installation; we lunch it 
via html file with a modern browser. The output  
of pre-processing step will be an annotated dataset 
and a JSON files include the annotation’s metadata 
for the annotation for both training and validation 
datasets. This operation take approximately  
420 min to manually annotate all image,  
by the average of a minute and a half for each image 
separately.

Source: Author’s illustration
Figure 6: Image annotation.

The model architecture

The Mask R-CNN framework consists of two stages. 
In the first stage, the framework inputs an image  
and uses a Region Proposal Network (RPN)  
to identify potential object regions. The second stage 
then predicts the classes, refines the bounding boxes, 
and generates segmentation masks for each object. 
In the Mask R-CNN system, the convolutional 
backbone is composed of the backbone network, 
region proposal network, and object classification 
module. The network head includes the boundary 
box regression module and the mask segmentation 
module. An input image is transformed  
into a feature map through the backbone network,  
a standardized convolutional neural network (CNN) 
that extracts features. The feature map is then used 
as input for the RPN to detect potential object areas. 
The feature extraction step is based on the original 
implementation of Faster R-CNN with ResNet-101 
(Lei and Sui, 2019). 
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Source: Author’s compilation
Figure 7: Backbone of Mask R-CNN.

The ResNet-101 architecture, as shown in Figure 8, 
includes a total of 104 convolutional layers.  
It is comprised of 33 blocks of layers, with 29  
of these blocks utilizing the output of the previous 
block as a direct input via residual connections. 
The remaining 4 blocks perform an additional 
operation of a 1x1 convolution layer with a stride 
of 1 followed by batch normalization before being 
added to the output of the previous block. The Mask 
R-CNN framework extends the Faster R-CNN box 
heads from ResNet and FPN by adding a fully 
convolutional mask prediction branch as part of its 
network head (Hafiz and Bhat, 2020).

Source: Author’s compilation
Figure 8: The head's layers.

Implementation

This section defines the environment requirements 
for implementing Mask R-CNN in this study.  
We use Python 3.6 as the programming language 
and the TensorFlow and Keras libraries for learning 
and classification (Yang et al., 2020). To enhance 
the model's performance, we employ simple  
and effective techniques such as data augmentation 
and use Tensorboard for log visualization.

TensorFlow

TensorFlow is an open-source machine learning 
library developed by Google for developing  
and running machine learning and deep learning 
applications. Its name is derived from the fact 
that operations in neural networks are primarily 
performed on multi-dimensional data tables, called 
tensors. A two-dimensional tensor is equivalent  
to a matrix. In this study, we use TensorFlow 1.15 
for local training on our machine and Tensorflow-
GPU 1.5 for cloud training.

Keras

Keras is an open-source library written in Python 
(under the MIT license) based on the work of Google 
developer François Chollet as part of the ONEIROS 
(Open-ended Neuro-Electronic Intelligent 
Robot Operating System) project. The library's 
goal is to allow the rapid constitution of neural 
networks, serving as an application programming 
interface (API) for accessing and programming 
various machine learning frameworks (Wäldchen  
and Mäder, 2018). In this study, we use Keras 2.2.5.

Tensorboard

Tensorboard is a visualization tool for understanding, 
debugging, and optimizing TensorFlow programs.  
It visualizes the TensorFlow graph, plots 
quantitative metrics about the execution  
of the graph, and displays additional data.

Training 

The training can be carried out at two levels.  
At the first level, only the heads can be trained  
by freezing all the backbone layers and training 
only the newly initialized layers, not using  
pre-trained weights from MS COCO. The second 
level involves training all layers of the entire model.

For this study, it is not necessary to train the model  
fully since the starting point is COCO-trained 
weights. Moreover, with a small dataset  
of 300 images, consisting of 200 for training  
and 20 for validation, it is not necessary to train 



Development of Organic Production in Ukraine: Potential, Current Threats and Consequences for Global 
Food Security

[66]

all layers, as it would consume a lot of time. Just 
training the heads should suffice. 

CPU vs GPU

The central processing unit (CPU) is the main 
component that performs arithmetic, logic,  
and control for every computer. Its main function 
is to execute instructions stored in the computer's 
memory in a sequential manner. The CPU plays  
a critical role in neural network computation 
because it handles general arithmetic calculations 
during the learning phase. CPUs are usually built 
with several powerful processing cores that are 
clocked between 2 and 3 GHz, making them ideal  
for performing sequential tasks (Padilha and 
Lucena, 2020). Additionally, the CPU independently  
of the GPU’s computation role (Pang et al., 2020), 
such as loading training data, handles all input/
output operations during the learning phase. Due  
to these tasks, training a large model using the CPU 
can be risky and time-consuming, which is why 
using the GPU instead of the CPU in the training 
stage is seen as beneficial.

The graphics processing unit (GPU), like  
the CPU, is a component of a computer used  
to process instructions, but the GPU can run 
multiple instructions simultaneously through 
parallelization. A GPU typically consists  
of multiple weak processing cores with a much 
lower clock speed compared to the CPU. This 
multiple processing core system was developed  
to parallelize computations through the use  
of threads, thus speeding up computations that 
would normally take a longer time on the CPU.

Since the GPU has the ability to run many 
processes simultaneously, it is useful for training 
neural networks that involve computationally 
intensive matrix multiplications. Training a neural 
network requires a large number of computations,  
and the GPU optimizes these computations 
using multiple memory channels and streaming 
processors (Thao et al., 2021).

Originally, GPUs were designed for rendering 
graphics. As a result, executing custom code 
on the GPU requires APIs that provide a higher 
level of abstraction, from low-level to high-level 
programming languages. CUDA was developed 
to utilize the GPU architecture's parallelism 
capabilities, such as multithreading, MIMD, SIMD, 
and instruction level, through low-level instructions 
(Carneiro Pessoa et al., 2018). TensorFlow,  

in conjunction with CUDA, can use the entire GPU 
architecture to further optimize computation time.

Train the algorithm locally on our machine

 In our study, we trained the model using a machine 
with the following configuration: an Intel Core  
i5-2520M CPU @2.50 GHz and 8GB of RAM.  
The training took approximately 7 hours for 10 
epochs, with an average of 2100 seconds per epoch 
(Figure 9). Each epoch consisted of 60 training  
batches and a prediction threshold of 0.9.  
The training loss was 0.6350 and the validation loss 
was 0.9447. Despite having a small training dataset, 
the model still achieved a decent level of accuracy.

Source: Author’s compilation
Figure 9: Train the algorithm locally on a machine.

In our dataset, we found various species of weeds 
with different sizes and shapes. The images  
in the dataset were of different sizes, so we resized 
them to 512 X 512 pixels. Then, we created 
two paths, one for the test dataset and another  
for the validation dataset. After that, we set  
up our model by extending the Dataset class  
and the Config class, which exist in the mrcnn 
folder, and configured it. Finally, we started  
the training. In the above model shown in Figure 9,  
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we trained a model for binary classification. 
However, to differentiate between weeds and crops 
with more precision, we decided to make the model 
larger and give it more classes. Therefore, we 
expanded our dataset by adding new weed species 
and crop types, such as sugar beet and wheat, which 
comprised almost 620 images. After preparing  
the new dataset, we re-trained the model with it.

Source: Author’s compilation
Figure 10: The model is being retrained locally on our machine.

This time, the model took longer to train, 
approximately two hours more than the previous 
training. It took approximately 9 hours for 10 
epochs, with an average of 2400 seconds per epoch 
(as shown in Figure 10). Each epoch consisted  
of 60 training batches and had a prediction 
threshold of 0.9. The training loss was 0.6350 
and the validation loss was 0.9447. Training  
the model on our machine requires more resources 
and performance optimization to improve accuracy 
and reduce the training time.     

Training the model on the cloud

Using cloud computing for deep learning simplifies 
the integration and management of large datasets 
for training algorithms. Deep learning models 
can then be efficiently and cost-effectively scaled 
using the processing power of GPUs. The cloud 
optimizes network distribution, enabling faster 
design, development, and training of deep learning 
applications. The use of the cloud offers several 
advantages, such as:

Speed: Deep learning algorithms are designed  
for fast learning. By utilizing GPU and CPU 
clusters for complex matrix operations, users can 
speed up the training of deep learning models. 
These models can handle large amounts of data and 
provide increasingly relevant results.

Scalability: Deep learning neural networks are ideal 
for running on multiple processors and distributing 
workloads across different types and amounts  

of processors. The cloud provides a wide range  
of on-demand resources, enabling the deployment 
of virtually unlimited resources to build deep 
learning models of any size.

Flexibility: Deep learning frameworks such  
as Apache MXNet, TensorFlow, Microsoft's 
Cognitive Toolkit, Caffe, Caffe2, Theano, Torch, 
and Keras can be run in the cloud, allowing you  
to choose the set of deep learning algorithm libraries 
that best fit your use case, whether it involves web, 
mobile, or connected devices.

There are several platforms and servers available 
for training remote models, including: 

Amazon Web Services (AWS): AWS offers 
over a hundred services that fall into categories 
such as compute, storage, database, developer 
tools, security and identity, analytics, artificial 
intelligence, and more. New customers are eligible 
for 12 months of free use with certain restrictions 
and limitations. Any usage beyond these limitations 
must be purchased. For example, they offer  
a Remote Desktop Protocol with 30 GB of storage, 
2 GB of RAM, and 1 CPU for free. Additional 
resources, such as GPUs, must be purchased. 

Google Colab: In recent years, Google Colab 
has become a popular choice for an end-to-end 
machine learning platform. It provides free GPU, 
CPU, storage, and RAM, but also has limitations. 
Some of the downsides of Google Colab include 
service interruptions, slow storage, unconfigured 
environments, and limited functionality (12 hours 
of interactive use). 

Kaggle: Kaggle, another Google product, is a web-
based platform that hosts data science contests.  
It offers an end-to-end machine learning platform  
with features similar to Colab, including free 
Jupyter notebooks and GPUs. Kaggle also provides 
many pre-installed Python packages, making  
it easier for some users to start.

Paperspace Gradient: Gradient is the solution  
we utilized in this study. An end-to-end platform 
offers a free-hosted Jupyter notebook cloud 
service with several options for pre-configured 
environments and free access to GPUs and CPUs. 
Gradient makes it easy to build, train, and deploy 
deep learning models, with a web-based user 
interface, a CLI, and an SDK. It appeals to both 
beginners and experts alike, with a user-friendly 
interface and low entry barrier. Some of the benefits 
of Gradient over other solutions are:

Faster, persistent storage, eliminating the need  
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to re-install libraries and re-download files each 
time you start your notebook.

Guaranteed sessions, reducing the risk of having 
your instance shut down mid-work. You can log out 
and come back later to find your session unchanged.

Pre-configured containers and templates, 
including popular environments with pre-installed 
dependencies (such as PyTorch, TensorFlow,  
or the Data Science Stack) or the option to use  
a custom container. There is also an ML showcase 
with sample projects that you can create and run 
free on your account.

A public dataset repository with a wide range  
of popular datasets available for free use  
and mounted on every notebook.

The ability to easily scale up and add more 
storage and high-end dedicated GPUs for the same 
environment as needed.

In this study, we will use the free environment 
offered by Gradient. It provides two options:  
the first offers access to 2 GB of RAM, 2 CPUs, 
and no GPU (Figure 11), with a runtime of 12 
hours without interruption. The second option 
provides access to 30 GB of RAM, 8 CPUs,  
an Nvidia Quadro M4000 GPU, and a runtime  
of 6 hours without interruption. We have chosen  
to work with the second option.

Source: AWS Cloud (2022)
Figure 11: The training environment (Cloud).

We will start by taking the same dataset and model  
used in the second local training and re-run  
the training on the cloud. This time, it took 
around 28 minutes for 10 epochs, with an average  
of 170 seconds per epoch, 60 training batches,  
and a threshold of 0.9 for prediction. The training 
loss was 0.8406, and the validation loss was 0.964. 

To decrease the loss, we increased the number  
of training batches to 100 and retrained the model. 
This time, the model took 45 minutes for 10 epochs,  
with an average of 280 seconds per epoch  

and 100 training batches, with a prediction 
threshold of 0.9. The training loss was 0.6896  
and the validation loss was 0.9113. However,  
as the loss was still high, we retrained the model 
again, this time with 40 epochs, 100 training 
batches per epoch, and a prediction threshold of 0.9.  
The training loss reached 0.2871, while  
the validation loss was 0.9663 (Figure 12). This 
time, the model took almost 3 hour.

Source: Author’s compilation
Figure 12: Training the model on a Gradient server (in the cloud).

Results and discussion
In this section, we will examine the results 
obtained during the training of our model, evaluate 
its performance, and demonstrate its prediction  
on sample data from the test dataset in the inference 
stage. Evaluating a deep learning model is a crucial 
step in any project process as it allows us to assess 
the accuracy and performance of the model. There 
are various parameters and metrics that can be used 
for evaluation. In our study, we will use logarithmic 
loss as our evaluation parameter.

Logarithmic loss, also known as log loss, is  
a suitable metric for multi-class classification. 
It penalizes false classifications by requiring  
the model to attribute a probability to each class  
for all samples. If we have N samples belonging  
to M classes, the log loss is calculated as follows:

Where,

yij, indicates whether sample i belongs to class j  
or not

pij, indicates the probability of sample i belonging 
to class j

The log loss has no upper limit and exists  
in the range [0, ∞). A log loss closer to 0 would 
indicate higher accuracy, while if the log loss is 
away from 0, it will indicate less accuracy.
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In general, decreasing the log loss will give a better 
accuracy for the classifier.

The goal of training a model is to find a set  
of weights and biases that have low Loss,  
on average, across all examples.

In Mask R-CNN we have 5 small principle losses, 
each one has a specific signification, and the figures 
below Losses obtained as a result of training, it can 
be accessed through the use of Tensorboard:

	- rpn_class_loss: How well the Region 
Proposal Network separates background 
with objetcs.

	- mrcnn_bbox_loss: How well the Mask 
RCNN localize objects.

	- mrcnn_class_loss: How well the Mask 
RCNN recognize each class of object.

	- mrcnn_mask_loss: How well the Mask 
RCNN segment objects.

We use thus losses to calculate a big Loss:  
A combination (surely an addition) of all  
the smaller losses.

Source: Author’s compilation
Figure 13: The model loss during cloud training.

Source: Author’s compilation
Figure 14: The model loss during local training.

After training the model both locally  
and on the cloud, the results shown in Figures 13  
and 14 indicate that cloud training is faster  
and better. The loss reaches 0.26 in the last 
epoch. However, it is evident that 10 epochs are 
not enough to train the model effectively, as seen  
in the reduction of the loss rate after epoch 13. 
This is because the model starts to memorize  
the input data rather than learn the underlying 
patterns, leading to overfitting. Hence, we will use 
the weights obtained after epoch 13 for inference.

A comparison between local and cloud training 
is summarized in Table 1. The first local training, 
with a dataset of 300 images, 10 epochs,  
and 60 batches, took 7 hours and resulted in a loss  
of 0.848, indicating an inaccurate model.  
In the second local training, the number  
of images was increased to 620, and the training  
time increased to 9 hours. However, the model  
became more accurate. On the cloud,  
with an environment offering 30 GB of RAM,  
8 CPU, and GPU, the same model was trained  
in 28 minutes with the parameters from the second 
local training. The accuracy was not suitable,  
so the number of epochs and batches was increased 
to 40 and 100 respectively, which took 3 hours  
to complete with a convincing precision. 

Epoch Batches Dataset Duration Duration / epoch Duration / step Loss

Local 10 60 300 images 7 hours 2100 seconds 36 second 0.8486

Local 10 60 620 images 9 hours 2300 seconds 39 second 0.635

Cloud 10 60 620 images 28 minutes 170 seconds 2 seconds 0.8406

Cloud 10 100 620 images 45 minutes 280 seconds 3 seconds 0.6896

Cloud 40 100 620 images 3 hours 280 seconds 3 seconds 0.26

Source: Compiled by the authors
Table 1: Comparison of local model training and cloud model training.
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In this section, we will use the trained model  
on the test dataset to predict the presence of weeds 
or crops in images. We have integrated the trained 
model into a web application developed using 
Flask. The interface of the application includes 
two buttons and an image frame as displayed  
in Figure 15. The upper button enables users  
to select an image, while the lower button allows 
them to load the image onto the server.

Source: Author’s illustration
Figure 15: Home page.

After clicking the "Select Image" button (as shown 
in Figure 16), a window will appear for selecting  
the specific image to be used in the prediction 
process.

Source: Author’s illustration
Figure 16: Upload image

After selecting the image, it can be viewed  
in the frame. To start the prediction process,  
the image must be uploaded to the server by clicking 
the "Upload Image" button. Once the image has 
been uploaded, the prediction can be initiated  
by clicking the "launch Detection" button,  
as depicted in Figure 17.

Source: Author’s illustration
Figure 17: Launch detection

At the end of the prediction process, the application  
provides the result of the initial image  
with a bounding box around the specific object  
(if it exists) along with the name of the class  
and the prediction probability. A mask is also 
applied to detect the object boundaries, as depicted 
in Figure 18. Users can start another prediction  
by clicking on the "New Prediction" button.  
The results shown in the images indicate that  
the application, using the trained model, can 
accurately detect and surround the grass in a short 
amount of time, and if run on the cloud, the results 
will be even faster.

Source: Author’s illustration
Figure 18: Result

Conclusion
The objective of this study was to create, train,  
and optimize a Mask R-CNN model for weed 
detection in images by comparing two training 
approaches: local machine and cloud. The goal was 
to achieve the highest accuracy and lowest loss  
in predicting, segmenting, and identifying  
the presence of common weeds in pictures.  
The successful implementation of this model can 
aid in optimizing herbicide use and controlling 
the spread of weeds. However, this model is 
limited to the images it was trained on and may 
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not be applicable to all weed species or growing 
conditions. Future work will aim to improve 
the model by incorporating a hybrid approach, 
incorporating additional data and increasing  
the diversity of the training set. This has the 
potential to further improve the accuracy of the 
model and make it more applicable to a wider range 
of use cases. The results of this study and future 
work in this area could have important implications  
for the agricultural industry, reducing environmental 

damage and improving crop yields.
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