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Abstract
Geoprocessing is a set of tools that can be used to efficiently address several pressing chal-lenges  
for the global economy ranging from agricultural productivity, the design of transport networks,  
to the prediction of climate change and natural disasters. This paper describes an Open Source Framework 
developed, within three European projects, for Ena-bling High-Performance Computing (HPC) and Cloud 
geoprocessing services applied to agricultural challenges. The main goals of the European Union projects 
EUXDAT (EUro-pean e-infrastructure for eXtreme Data Analytics in sustainable developmenT), CYBELE 
(fostering precision agriculture and livestock farming through secure access to large-scale HPC-enabled 
virtual industrial experimentation environment empowering scalable big data analytics), and EOPEN  
(opEn interOperable Platform for unified access and analysis of Earth observatioN data) are to enable the use  
of large HPC systems, as well as big data management, user-friendly access and visualization of results.  
In addition, these projects focus on the development of software frameworks, and fuse Earth-observation data, 
such as Copernicus data, with non-Earth-observation data, such as weather, environmental and social media 
information. In this paper, we describe the agroclimatic-zones pilot used to validate the framework. Finally, 
performance metrics collected during the execution (up to 182 times speedup with 256 MPI processes)  
of the pilot are presented. 
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Introduction 
Geoprocessing is a set of tools, generally intended 
for the mathematical processing carried out  
by a Geographic Information System (GIS). These 
tools consist of es-sentially three parts, as shown  
in Figure 1, namely data storage, computational 
pro-cessing, and visualization or access to re-sults.

During the last decades, the results of geo-processing 
have greatly improved thanks to the exponential 
technological progress in computational power. 
However, improving the efficiency of agricultural 
productivity requires solving the techno-logical 
challenge of increasing both the amount of data  
to be stored and the com-putational load by several 
orders of magnitude. 

In order to tackle these challenges, during  

the last decades, researchers and professionals  
in the area have worked towards im-proving overall 
code performance in several ways, including 
parallelization of code libraries, structuring  
of the data, as well as balancing the computational 
load in clusters of computers (Figure 1).

Source: own research and processing
Figure 1: Fundamental components of geoprocessing systems  

and their interrelationship.
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As a result, MPI and OpenMP now 
represent some of the most popular tools  
for code paralleliza-tion. And more recently, 
cloud computing and High-Performance 
Computing (HPC) have become the standard  
for Big Data processing. In particular, HPC systems 
are currently able to provide the best computing 
performance as well as enhanced data sharing 
between computing nodes (Mi-neter et al., 2000; 
Zhang, 2010; Li, 2020).

In the next sections, we define some theoretical  
and practical concepts that need to be considered 
for an efficient use of HPC systems.

Hardware for HPC

One important difference between HPC  
and Cloud systems is their interconnection 
network. Most modern HPC systems are clusters 
of Symmetric Multi-Processing (SMP) nodes  
with high-speed interconnection network, which 
eases the collaborative computation between 
nodes as well as the sharing of data between them.  
On the other hand, Cloud computing nodes have 
lower performance interconnection networks than 
HPC. Therefore, the parallelized applications 
running in Cloud should have less communication 
between nodes in order to not lose performance.

A SMP node consists of multiple identical 
processing elements, with identical memory 
access. The memory inside of the nodes allows 
strongly coupled processing and communication. 
The computation carried out among multiple nodes 
will have higher communication latency between 
cores when they are on different nodes and higher 
memory access latency when the data required  
by one node is stored in the memory of another 
node.

Parallelization Strategies for HPC

There are two main resources that can 
be distributed: the processing elements  
and the memory. Considering this, the parallelization 
of an hypothetical application will consists  
in deciding how to distribute the computational 
load among the processing elements, and how  
to distribute the data when using more than one 
node (case of distributed memory).

The distribution of the computation load and data 
requires defining how the internode communication 
will be performed, which is a very important aspect 
to take into account. Inefficient communication 
can make the processing elements stay idle while 
waiting for data from other processing elements 
or memory, which will produce an inefficient 

use of processing elements and therefore extend  
the execution time. Montañana (2010) provides  
more details on HPC architecture  
and interconnection networks.

MPI and OpenMP are some of the most popular 
libraries and tools used for HPC systems. MPI is 
typically used for distributed memory systems.

Parallelization performance

A hypothetical application can be divided into two 
parts, namely the part that needs to be executed 
sequentially (s), and the part that can run in parallel 
(p). Equation 1 represents the decimal fraction  
of that distribution, where 1 stands for the total,  
and s and p values are between 1 and 0:

1 = s + p	 (1)

Figure 2 describes the above concept pictorially,  
by showing an application that exhibits the potential  
of running 50% of its code in parallel (green bar 
in the figure). The figure shows that the total 
execution time becomes smaller as the number  
of used cores is increased. This is because  
the part of the code that runs in parallel is split 
evenly among the processors that execute their 
respective portion of the code concurrently.

Source: own representation of the Amdahl’s law (Amdahl, 1967)
Figure 2: Reduction of execution time and increase  

of Speedup with the increase of the number of cores used.

The figure also illustrates the concept of Speedup 
(in latency), which corresponds to the ratio between 
the execution time sampled when the application 
is executed using only one core, and when using  
an increased number of them. Calculating the 
Speedup is useful for determining the im-pact  
of specific code changes on perfor-mance.  
Equation 2 shows how the Speedup is calculated  
as the division of Equation 1 for one and n 
processes, where n is the number of cores used,  
or the number of parallel executions of the part  
of the appli-cation that can be  parallelized. 
This equa-tion is a formulation of Amdahl's law 
(Amdahl, 1967).

 	 (2)
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From this, it follows that the execution 
time of a parallelized application is given  
by the execution time required to run the sequential 
part of the application plus the execution time  
of the parallelized part. This also means that  
the proportion of the application that can be 
executed in parallel dictates the theoretical 
maximum Speedup that can be achieved by a given 
parallel application.

Figure 3 shows the Speedup for different proportions 
of an application that can be  parallelized. The ideal 
case where 100% of an application is parallelized 
is virtually impossible to attain due to software 
and hardware limitations, such as communication 
latencies and parallelization overheads.  

Source: own processing of the Amdahl’s law (Amdahl, 1967)
Figure 3: Speedup for different proportion of application being 

parallelized. The slopes of the curves are reduced from the point 
where the improvements no longer have a significant impact  
on the total run time. The curves saturate at the level where 

practically all the execution time is due to the non-parallelized  
part of the code.

Our experience has taught us that achieving 
performance improvement is relatively simple when 
the proportion of code being parallelized is small 
and the parallel code is executed on a small number 
of cores. However, the improvement becomes more 
difficult to achieve as the number of cores required 
for a given parallelization strategy increases.  
For this reason, there is a trade-off between  
the effort of parallelization and the performance 
improvements that can be obtained through 
parallelization. The most frequently used 
applications should also be the ones that receive  
the most parallelization efforts.

Contributions of the paper and overview of EU 
projects 

In this paper, we significantly extend on our 
previous description of the Open-Source framework  
for enabling HPC and Cloud geoprocessing 
services (Montañana et al, 2020b). We will also 
show some preliminary results obtained by running 

the agroclimatic-zones pilot within the framework 
in the supercomputer Hawk at High Performance 
Computing Center Stuttgart (HLRS).

The main contribution of this paper is to showcase 
the latest developments in the creation of innovative 
platforms that solve several technological 
challenges that are relevant to geoprocessing, 
such as the integration of data from different 
origins and  formats, the definition of interfaces  
for geoprocessing applications, and the capability  
of executing such applications on modern  
computing solutions like HPC and in the Cloud.  
Addressing these challenges requires  
a consideration of additional aspects such  
as allowing larger data transfer, and the 
enforcement of secure access and control of the data  
and the computational results.

All these challenges are of definite relevance  
to the EU projects EUXDAT (EUXDAT, 2020), 
EOPEN (VEOPEN, 2020), and CYBELE 
(Davy et al., 2020). In fact, these projects focus  
on developing solutions for the collection of big  
data from different sources, data transfer  
to large-scale HPC and Cloud Computing 
infrastructures for processing, the development 
of visualization tools as well as secure access  
to computational results.

In the next subsections, we provide a summary  
of the goals of the three projects:

EUXDAT 

EXUDAT proposes an e-Infrastructure for enabling 
Large Data Analytics-as-a-Service, which addresses 
the problems related to the current and future huge 
amount of heterogeneous data to be managed 
and processed within the agricultural domain. 
EUXDAT builds on existing mature components 
by providing an advanced frontend, where users 
develop applications on top of an infrastructure 
based on HPC and Cloud. The frontend provides 
monitoring information, visualization, different 
distributed data analytic tools, enhanced data  
and processes catalogs. EUXDAT includes a large 
set of data connectors such as Unmanned Aerial 
Vehicles (UAVs), Copernicus, and field sensors 
for scalable analytics.  Figure 4 shows the type  
of field sensors deployed for the EUXDAT project 
in farming areas. These instruments (Pessl, 
2020) allow collection of a wide range of data  
about remote are-as, such as depth of precipitation, 
air tem-perature, air humidity, global radiation, 
wind speed, soil temperature, and leaf wetness.

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services
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Source: own processing, pictures took by authors
Figure 4: Example of a typical field sensor deployed in farming 
areas proposed within EUXDAT project. The sensor shown is  
an iMETOS 3.3 data logger developed by Pessl Instruments 

GmbH. 

As for the brokering infrastructure, EUXDAT aims 
at optimizing data and resource usage. In addition 
to a mecha-nism for supporting data management 
linked to data quality evaluation, EUXDAT 
proposes a method to orches-trate the execution 
of tasks that is able to identify whether the best 
target for execut-ing a given application is HPC  
or Cloud. It uses monitoring and profiling 
information for making decisions based on trade-offs  
related to cost, data constraints, efficiency,  
and resource availability. During the pro-ject, 
EUXDAT is in contact with scientific communities, 
in order to identify new trends and datasets,  
for guiding the evolu-tion of the e-Infrastructure. 
The result of the project will be an integrated 
e-Infrastructure that encourages end-users to create 
new applications for sustainable development.

EUXDAT demonstrates real agriculture 
scenarios, land monitoring, and energy efficiency  
for sustainable development, as a way to support 
planning policies. 

CYBELE

CYBELE is a European research project combining 
Agriculture, HPC, and Big Da-ta. It involves 
31 research institutes and enterprises across EU 
countries. It stands for "Fostering Precision 
Agriculture and Livestock Farming through 
Secure Access to Large-Scale HPC-Enabled 
Virtual Industrial Experimentation Environment 
Empowering Scalable Big Data Analytics" (Perakis, 
2020).

CYBELE generates innovation and creates value 

in the domain of agri-food, and its verticals  
in the sub-domains of Precision Agriculture (PA) 
and Precision Livestock Farming (PLF) specifically, 
as demonstrated by the real-life industrial cases  
to be supported, empower capacity building within 
the industrial and research community. The project 
aspires at demonstrating how the convergence  
of HPC, Big Data, Cloud Computing and the Internet 
of Things (IoT) can revolutionize farming, reduce 
food scarcity, increase food supply, bringing social, 
economic and environ-mental benefits. It develops 
large scale HPC-enabled testbeds and delivers  
a distributed big data management architecture  
and a data management strategy.

EOPEN

The objective of  EOPEN is to fuse Earth  
Observation (EO) data with multiple, 
heterogeneous, and big data sources, in order  
to improve the monitoring capabilities of the future  
EO downstream sector. EO data consists  
of the Copernicus and Sentinel data, while  
the non-EO data is weather, environmental,  
and social media infor-mation.

The fusion between these diverse types of data 
is carried out at the semantic level, to provide 
reasoning mechanisms and in-teroperable solutions, 
through the seman-tic linking of information.  
The processing of large streams of data is based 
on open-source and scalable algorithms in change 
detection, event detection, data clustering, which 
are built on HPC infrastructures.

Alongside this enhanced data fusion ap-proach,  
an innovative architecture over-arching 
Joint Decision & Information Governance is 
combined with the tech-nical solution to assist  
with decision making and visual analytics. EOPEN 
is demonstrated through real use case scenarios  
in flood risk monitoring, food security, and climate 
change monitoring.

Materials and methods
Platform implementation 

The common goal shared across these projects is 
to develop a sustainable approach that facilitates 
access to data, geoprocessing applications,  
state-of-the-art solutions for big-data management, 
as well as computational resources provided  
by Cloud platforms and HPC centers.

Therefore, the target of the implementation  
of the platform is to provide an open source system 
that can be used on HPC and Cloud computing 



[65]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

systems for hosting commercial applications  
or products, as well as to ensure continuity  
in the use of a given platform after the respective 
EU project has been finalized. For example, 
although it may not be apparent, the reason  
for including support for accounting and billing  
in such platforms is to facilitate the future reuse  
of code. In fact, in order to ensure that a given 
piece of code can be successfully reused later  
in time, the costs of using large computer 
systems, as well as the cost of data acquisition  
from proprietary sources must be already considered 
during the development stage.

Figure 5 illustrates the main components  
of a typical infrastructure platform as well as 
their interrelationship. Each of the components  
in a given infrastructure platform has a clearly 
defined User Interface (UI).

Source: own research and processing
Figure 5: Representative infrastructure platform for the three EU 

projects described in the paper.

Portal UI API

The first component encountered by the user 
is the Portal User Interface (UI) Application 
Programming Interface (API). The portal UI API 
provides users with a list of available applications  
and the data catalog available for them. 
This component supports the development  
of applications such as mobile devices or web  
interfaces while abstracting away the complexity 

of the other components. For example, the user 
does not need to consider neither the complexity 
or format of the data, nor the different data 
sources, because it is encapsulated by the platform 
internally. Thus, once the user selects the task  
to perform, such as the prediction of temperature 
for a particular land area on a particu-lar date,  
the user just waits for the result. Needless to say,  
the time needed until a response is received is 
reduced by multiple orders of magnitude when 
using a large-scale HPC system.

Data Catalog

The data catalog collects data from different data 
sources, which may or not be free of charge. 
Similarly, the catalog of applications may 
include free applications such as those developed  
and hosted within the platform of a given project, 
or commercial applications. This is done in order 
to ad-vertise the platform to third parties that may 
wish to use its services in order to commercialize 
applications or data.

Orchestrator

The user request is submitted to the orchestrator, 
which is responsible for the transfer and execution 
of the applications on the computing resources. 
Based on the user request, the orchestrator selects 
the appropriate computational resource (i.e. HPC  
or Cloud) onto which to execute the task. 
Orchestrators such as Cloudify typically use  
an application model Domain Specific Language 
(DSL) based on Topology and Orchestration 
Specification for Cloud Applications (TOSCA), 
which encourages modularity of applications. 
This is encoded in the `blueprint' files, in which  
the orchestrator packages the specifica-tions  
of the user parameters, the input and output 
files, as well as the binary files to be transferred  
into the computational re-sources. A fragment  
of a blueprint is shown in Listing 1. In particular, 
Cloudify provides a user-friendly GUI that allows 
to easily manage blueprint files and associat-ed 
deployments (Figure 6). Moreover, the blueprint 
file allows the orchestrator to delegate the required 
staging of input and output data to the Data Mover 
component.

For instance, the data_mover_options fields 
in the blueprint specify the files to be transferred, 
as well as the source, desti-nation, and the user 
credentials.

In addition, the orchestrator’s API allows  
the execution to be requested from a user-friendly 
web interface as shown the next sections. 
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Source: Screenshot from http://cloudify-api.test.euxdat.eu/console
Figure 6: Cloudify GUI. Cloudify offers an intuitive GUI that enables users to upload blueprints, create deployment.  

The GUI also gives an overview of the number of compute nodes and running execution.

Hybrid orchestrator

Many applications that run on HPC are usually 
part of bigger workflows that run in the cloud, such  
as those with tightly-coupled data or extensive  
big data analytics. In a similar fashion as for micro-
services applications running solely in the Cloud, 
an automatic hybrid deployment and management 
of a modularized application in HPC and Cloud 
is expected to optimize the overall performance  
and enable new development architectures.  
In order to address this technical gap, the AI,  
Data & Robotics Unit (former Advanced 
Parallel Computing lab) Lab at ATOS Research  
and Innovation (ARI) Spain has recently developed 
within the EUXDAT project a plugin for Cloudify 
called Crou-pier (Carnero and Nieto, 2018) written 
in Python that adapts the Cloudify orchestrator 
algorithm for the management of HPC resources,  
so that Cloudify can orchestrate a hybrid  
environment including both Cloud and HPC. 
Croupier has been developed to essentially bring 
the latest and greatest features that have been 
enabled by Cloud architectures, such as modularity, 
interoperability, software as a service (SaaS), 
infrastructure as code (IaC), con-tinuous integration 
and deployment (CI/CD), to the world of HPC. 
Thanks to Croupier, it is for example possible  
to run batch applications on both HPC and Cloud. 

Data mover

The size of the data files requires an efficient  
transfer method for transferring them into the 
computational resources.The current network 
protocol used for such pur-poses in centers like 
HLRS is GridFTP. Published results show that 
GridFTP pro-vides better performance, between 
5 and 10 times faster, than the standard FTP  
protocol (Esposito et al., 2003). Other ad-vantages 
of using GridFTP include the security provided 
based on x509 certificates and the capability  
to carry out third party transfers (Figure 7).

node_templates:
job:
     type: croupier.nodes.job
     job_options:
          type: "SRUN"
          command:"coordinates.txt"
          nodes: 100
          max_time: "04:00:00"
data_mover_options:
     workspace: wsdata
     create_ws: TRUE
     source: "ATOS"
     destination: "HLRS"
     source_input: demo_cloud_folder
     dest_output: demo_hpc_folder
     grid_userkey:
          --BEGIN ENCRYPTED PRIVATE KEY--
          ...
          --END ENCRYPTED PRIVATE KEY--
     grid_usercert:
          -----BEGIN CERTIFICATE-----
          ...
          -----END CERTIFICATE-----

Source: own research and processing
Figure 7: Example of a fragment of a TOSCA blueprint file.

Figure 8 shows the main elements and their 
communication in a GrdiFTP third party transfer.  
The concept consists of a client point from where 
the transfer is re-quested, but the data does not 
have to traverse it as in other protocols. Instead, 
the data is directly transferred between servers 
(servers A and B in the figure) using multiple 
communication channels in parallel. This protocol 
already proved better performance on data transfers 
performed over the internet because it allows using 
the high bandwidth available in the communication 
channels in the servers, by multiplexing the traffic 
over multiple channels in the internet that have 
lower bandwidth. It is highly desired to avoid 
using any intermediate storage, because it requires 
storage space, which slows down the data transfer. 
For that reason, we ex-plored the state of the art  
on large-scale data management solutions that 
support the GridFTP network protocol.
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The most advanced tool for using GridFTP that we 
could find was Rucio. Rucio is an open source tool 
developed within the context of the ATLAS project 
for manag-ing big data at the European Organization 
for Nuclear Research (CERN). It is cur-rently used 
to transfer more than one petabyteworth of data 
per day, and more than one million files per day 
(Serfon, C. et al., 2019). However, after performing 
detailed evaluation we identified two ma-jor issues 
in using Rucio and therefore decided to develop 
our own plugin instead. The first issue is that Rucio 
does not allow running third party transfers. The 
second one is that Rucio cannot handle recursive 
directory transfers, when defining the des-tination 
folder (non-deterministic model). Although  
an alternative exists (determinis-tic model, where 
Rucio creates folders labeled with an alphanumeric 
string), it still makes it difficult to integrate the tool 
with our framework.

Source: own figure based on the GridFTP protocol (www.
globus.org)

Figure 8: GridFTP direct third party transfer.  Client requests 
a site-to-site direct data transfer. The transfer is multiplexed 

among multiple channels.

The development of the Data Mover plugin in place  
of usring Rucio allowed us to fulfill our 
project requirements as well as its integration  
with the other compo-nents. Its implementation 
is based on the use of the Globus-Client 
(SURFsara, 2015) and uberFTP (NCSA, 2020). 
The Data Mover plugin has been developed within  
the EUXDAT project and is now an inte-gral part 
of the Croupier plugin for Cloudi-fy (Montañana 
and  Gorroñogoitia, 2020a). The Data Mover plugin 
supports GridFTP direct data transfers between 
data sources and computational resources without  
intermediate staging, as required for the previously 
described pilot and use cases.

HPC and Cloud Computing

HPC and Cloud computing systems exhibit 
differences in terms of performance and cost. 
Moreover, the implementation of a given application 
on either of these sys-tems may differ significantly 
in order to achieve the best performance  
and resource utilization.

An HPC system consists of a large number  
of compute nodes that are physically close to each 
other (ideally all in the same room) with a high-
performance interconnection network running 

between them. Figure 9 outlines the different nodes 
a user application goes through when it is submitted 
to an HPC system.

HPC systems rely on low-latency communication 
to share computational results between compute 
nodes. Moreover, HPC systems tend to have higher 
costs than Cloud systems for executing applications, 
due to the high cost of the interconnection network 
as well as the maintenance cost incurred due  
to having to run cooling sys-tems needed  
to dissipate the large heat generated by the hardware 
that is physically located in a relatively small space.

On the other hand, Cloud computing systems 
consist of different types of physical hardware  
(e.g., networking equipment, load balancers, 
servers) that can be located in different geographical 
locations. Virtual-ization is also typically employed 
in such systems in order to connect servers together, 
and also to divide and abstract resources in order  
to make them accessible to users.  Cloud computing 
systems typically do not require a high-performance 
interconnection network between compute nodes, 
and as these are not located in the same space Cloud 
computing systems do not incur additional costs  
for cooling systems.

Applications executed in HPC centers typically 
show better performance than those executed  
in the Cloud. However, in order to make efficient 
use of resources additional effort is needed  
in order to `parallelize'  applications. Parallelizing 
an application essentially entails spreading  
the workload among different computing nodes. 
On the other hand, applications to be executed  
in the Cloud can be easier to implement as it is 
possible to simply submit replicas of the same 
application as different independent jobs, each 
targeting a different portion of input data. 

Source: own research and processing
Figure 9: Different nodes involved in the execution  
of an application in an HPC system. User uploads  

the application on a `frontend' node. The job is then dispatched 
to a scheduler node that manages where and when it will be run.  

The computation nodes, highlighted in green, are responsible  
for running jobs.
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Although using HPC systems may lead to greater 
performance than Cloud computing systems, it 
requires higher implementation efforts and costs  
for execution. Hence, there is not a general agreement 
on which system to run a given application on,  
and it is up to the user to decide what to trade 
between implementation effort and execution cost.

Monitoring

In order to improve future application executions, 
the metrics related to the utilization of different 
resources are registered into a monitoring server 
such as Prometheus. Using an open source system 
moni-toring and alerting toolkit such as Prome-
theus facilitates the decision of where to allocate 
future task requests depending on specific user 
constraints, such as reduced computation time 
or cost. Figure 10 shows the overall monitoring 
process, which includes collection of metrics  
at the computation nodes, storing the metrics  
in a Prometheus server (with metrics being pushed 
by the Pushgateway plugin to the server if they 
cannot be directly sampled at the computation 
nodes by Prometheus), and accessing the stored 
data through the Grafana visualization interface. 
This system allows to inspect metrics in real time 
as soon as they are stored in Prometheus.

Source: own research and processing. Logos of Pushgateway, 
Prometheus, Grafano took from https://prometheus.io and 
https://grafana.com

Figure 10: Collection and access to the monitored metrics.
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Once the computation is completed  
and the monitoring metrics have been collected, 
the results are moved into a repository that can be 
accessed by the user, and the user is notified.

Use cases and pilots

The three EU projects presented above are focused 
on the development and testing of solutions  
for the field of agriculture. Agriculture is a key 
player in economic and political stability.

Because of its importance, governments are funding 
the development of solutions data access systems, 
geoprocessing, and tools for decision making.

The different uses cases demonstrate the capacity 
of the HPC solutions proposed across the projects. 

The use cases cover a wide range of real-life 
applications ranging from detection of weather 
conditions, humidity or crop dis-eases, to precision 
agriculture, livestock farming, and exploration.  
In the next sections, we provide a brief description 
of a selection of use cases. It should be noted that 
access to the implementations of the use cases is 
currently limited to consorti-um partners. Towards 
the end of the respective projects, the use cases will 
be made available for the end users commu-nities. 

OpenLand monitoring and sustainable 
magement

This use case aims at developing a deep learning 
algorithm that uses a range of input data  
for predicting soil and crop status. The input data 
includes images generated by multirotor UAV 
systems with a hyperspectral camera as well  
as Earth observation and meteorological data.

3D Farming

This use case focuses on analytics models 
within the context of spatial analysis for farming  
(e.g., locating the highest productivity zones). It will 

Source: screenshot from http://climatic-patterns.test.euxdat.eu
Figure 11: Web interface of the OpenLand monitoring pilot. 
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provide 3D visualization for the obtained results, 
which is especially helpful for understanding 
different soil parameters such as amount of water, 
and solved particles and nutrients (Figure 11).

Organic soya yield and protein content prediction

There is a strong interest in the predictive analytics 
of soybean farming, mainly because the EU is 
strongly dependent on other continents for sourcing 
plantbased proteins. In light of this, this use case 
develops methods for predicting maps indicating 
soybean yield and protein-content based on crowd-
sourced data, satellite imagery, and additional 
information if available, such as electromagnetic 
soil scans and other sensory data.

Climate-smart predictive models for viticulture

This use case addresses the development  
of complex, highly-nonlinear models for vine 
and grape growth, which rely on a large number 
of variables that have been shown to affect  
the quality and quantity of the produced yields.  
The range of input data includes soil/elevation 
maps, earth observations, genomics, chemical 
analysis, environmental and climatic data.

Climate services for organic fruit production

This use case aims at helping with the prevention 
of damaging effects caused by frost and hail.  
The solution under development focuses  
on providing risk probability mapping calculated 
based on models obtained by machine learning 
techniques.

In order to train the predictive model, a wide range 
of data sources are used including but not limited  
to climate instability indices, digital terrain 
models, in-situ environmental and climatic data,  
and satellite images.

Optimizing computations for crop yield 
forecasting

This use case aims at developing a crop yield 
monitoring tool that can be used for agricultural 
monitoring (e.g., early warning and anomaly 
detection), index-based insurance (index estimates), 
and farmer advisory services. Its goal is to compute 
a productivity estimation based on cropping systems 
model and a combination of different datasets, such 
as ingest crop, soil, historic weather, and weather 
forecasts data. The computation underlying this 
use case becomes more challenging as the amount  
and resolution of available data are increased.

Evaluation

Next, we describe the pilot used to validate the 
framework. Results of the perfor-mance of the pilot 
are shown after that.

Case study: Agroclimatic-zones pilot

In this section, we focus on the agroclimatic-
zones pilot for the validation of the framework 
proposed in this paper. We decided to use this 
pilot because at the time of writing it was one  
of the most mature pilots available across  
all the projects. From a computing point of view, 
the algo-rithm associated with this use case 
is also relatively ‘simple’ while still holding  
the potential to be parallelized using one  
of the parallel programming frameworks  
for execution on HPC described above. 

Currently, the available maps of climatic zones 
are very generic and exhibit low granularity. 
Although they are able to display some differences  
in topography between areas, the areas shown  
by such maps tend to be quite large and do not 
include, for example, seaside buffer zones, weather 
divides, and South-North differences.

The idea of this algorithm is to create a classification 
system that allows to characterize land areas  
as different agroclimatic groups, based on long-term  
climate data, land cover, and topography 
information. 

The goal of the algorithm is to generate local 
climate maps that take into account general 
weather conditions (large-scale weather models), 
local topography (with North/South slopes), buffer 
effects (such as lakes, sea, or swamps) and soil 
types.

The tool is primarily intended for:

	- Agricultural extension counselors,  
or technical farm organizations wishing  
to make an investment in frost protection, 
irrigation, etc.

	- Insurance and other financial institutions 
wishing to make decisions on quality  
and risk of agricultural invest-ments.

	- Researchers interested in making 
decisions related to field trial (climatic) 
representativeness.

	- Researchers and advisors interested  
in checking the impact of climate change 
on a given area and making decisions about 
future management strategies.
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The expected frequency of use for the tool is once 
per year, while the type of data queries could 
be either local or regional (e.g., comparisons  
of several sites). By using the proposed tool it will 
be possible to predict long-term climate changes, 
which will in turn allow to make better-informed 
long-term decisions about crops and use resources 
more efficiently. One example of this is frost 
protection. In the past few years, significant parts 
of the Central EU Orchard and Vineyard industry 
have been affected by late frosts, which required 
making critical decisions about anti-frost protection 
measures, varietal changes, and risk mitigation 
strategies (Vitasse and Rebetz, 2018). In the rest  
of the paper, the application of the tool  
for computing frost-related information that may be 
useful in frost protection and management will be 
presented.

Inputs to the algorithm

The algorithm takes as inputs two different 
types of data as well as a set of input parameters 
provided by the user. The first piece of input data is 
meteorological data in the ERA5-Land (ECMWF/
CDS) or NEMS30 (Meteoblue AG) format/model. 
The data is encoded in NetCDF files used as input 
data in the algorithm. The second piece of input 
data is optional and it includes topography maps 
(EU-DEM format) and land cover/soil maps (Joint 
Research Center or Open Land Use Map).

The input parameters provided by the users are:

	- Area of interest encoded by polygon drawn 
over map presented to the user

	- Start year 
	- End year  
	- Probability of first/last frost day 
	- Frost temperature (in degree Celsius)
	- Daily hours with minimum tempera-ture: 

start hour, end hour (0-23)
	- Length of stretch of last and first frost days to 

be found for a single year 

Output of the algorithm

The output of the algorithm is a set of values 
corresponding to agroclimatic variables calculated 
based on the input data and user input parameters. 
For every point in the polygon specified by the user, 
the algorithm computes the following:

	- Last spring frost date
	- First fall frost date
	- Length of frost-free season

	- Number of frost days
	- Average number of frost days for the period 

spanning the start and end year 

The output information is stored as a GeoJSON file.

Proposed parallelization strategy

At the smallest level, the agroclimatic-zones 
algorithm calculates, for a given position  
on the map identified by a pair of latitude  
and longitude values, the first and last frost date 
for each year over a user-defined range of years. 
From a programmatic point of view (Figure 14). 
This is achieved through the sequential invocation 
of three nested functions, with information  
for a single year and grid point in latitude  
and longitude dimensional space being computed  
by the innermost function (findfrostdates), followed 
by an intermedi-ate function that aggregates this 
information across multiple years (frostdateyearly). 
Finally, the outermost function invokes the two 
inner functions over mul-tiple points in latitude and 
longitude dimensional space (frostdatesplaces). 
Since for a typical execution of the algorithm  
the number of years (maximum value is 37) tends 
to be much smaller than the total number of pairs  
of latitude /longitude val-ues (maximum value  
for this study was 70 longitude values x 27 
latitude values = 1890 grid points), it seemed 
more intuitive to perform a parallelization  
of the outermost function frostdatesplaces, such 
that each MPI process would essentially be 
responsible for calculating the output in-formation  
for an independent pair of latitude/longitude values. 
Parallelizing this function would not break the code 
or cause bottlenecks because the computations 
for different pairs of latitude/longitude values 
are independent and can, therefore, be performed 
asynchronously. Hence, we essentially used MPI 
to schedule parallel execution of an identical 
computation (with the only difference being  
the input grid point of latitude/longitude values) 
over multiple processes, rather than using point-
to-point communication for directly improving  
the performance of the serial/sequential 
agroclimatic-zones algorithm.

Even if the serial application was written  
in Python, introducing the proposed changes was 
easily achieved by using the Message Passing 
Interface (MPI) for Python package (Dalcin, 2019)  
(Figure 12).
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Source: screenshot from http://frostdates.test.euxdat.eu
Figure 12: Web interface of the agroclimaatic zones  pilot.

Results and discussion 
Application requirements evaluation  
for execution of parallel agroclimatic-zones 
algorithm in HPC

The resource requirements for the agroclimatic-
zones can be evaluated considering  
the infrastructure in which the algorithm will 
be implemented and finally executed. All  
of the projects have access to the Hewlett Packard 
Enterprise Apollo 9000 Hawk supercomputer 
available at the HPC Center in Stuttgart (HRLS). 
Table 1 shows the key features of Hawk, which was 
launched in February 2020.

Source: https://www.hlrs.de/systems/hpe-apollo-9000-hawk
Table 1: Characteristics of the HLRS Hawk HPC system.

Name HPE Apollo 9000 Hawk

Number of node 5,632

Number of cores 720,896

Peak performance 26 Petaflops

Disk storage capacity 25 PB

Interconnection net InfiniBand HDR (200Gbit/s)

Power consumption 2112 KW,  to be increased

The simultaneous use of HPC systems by a large 
number of users requires that each user's execution 
request includes a specification of the number  
of computing nodes and software to be used.  
After a request for execution is submitted, 
it is queued until all the resources required  
for the execution become available. Most HPC 
centers need to have very high usage in order  
to be viable. This, however, means that the waiting 
time for the execution of a given application 
can range from a few minutes to a few days 
depending on the workload of the HPC center  

and the resource requirements specified in a given  
request. Obviously, the user is only billed  
for effective compu-tation time, not for time 
spent waiting in the queue. Hence, the required 
computation time is an important aspect  
to consider when executing geoprocessing 
applications in such infrastructures. In this respect,  
an option is to upload the required data  
to the HPC system prior to execution as this can 
save a significant amount of computation time  
(and in turn cost).

Source: own research and processing
Figure 13: Pseudocode of serial agroclimatic-zones algorithm 

(to be continued).

input:
  startlat, startlon, endlat, endlon,  startyear, en-dyear,
  probability, frostdegree, starthourday, endhourday, 
  dayinrow
output: 
  firstfrosday,   lastfrostday   frostfreeperiod, 
  numbfrostdays,   avgnumbfrostdays
begin
  call function frostdatesplaces
    loop over lat & lon
      call function frostdatesyearly
        initialize nmbfrdayslist = empty list
        loop over years
          call function findfrostdates
            initialize numbfrostdays = 0
            initialize lastfrostday = 0
            initialize firstfrostday = 0 
            loop over days between Jan and Jul 
              initialize daymin = 50
              loop over hours
                calculate currentemp
                if currenttemp < daymin:
                  daymin = currenttemp
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Source: own research and processing
Figure 13: Pseudocode of serial agroclimatic-zones algorithm 

(continuation).

              if daymin <= frostdegree:
                numbfrostdays += 1
            output lastfrostday 
            loop over days between Jul and Jan 
              initialise daymin = 50
              loop over hours
                calculate currentemp
                if currenttemp < daymin:
                  daymin = currenttemp
              if daymin <= frostdegree:
                numbfrostdays += 1
              output firstfrostday
              output numbfrostdays
              frostfreeperiod = (see next line)
              firstfrostday - lastfrostday
              output frostfreeperiod
              append numbfrostdays to nmbfrdayslist
           avgnumbfrostdays = mean(nmbfrdayslist)
           output avgnumbfrostdays

Table 2 shows the preliminary requirements of two 
applications belonging to use cases from different 
projects. We chose these applications because 
their resource requirements are common among all  
of the listed use cases. In particular, the estimated 
size of data to be transferred and the computational 
load of the applications for computing agroclimatic-
zones and land morphometry characteristics are 
shown. Since a use case is composed of a series  
of geoprocessing applications, the computational 
and data storage requirements of a use case 
presented here correspond to the accumulation 
of the analyzed requirements of the individual 
constituent applications.

While consideration must be placed in evaluating 
application requirements before execution,  
the execution time of an application is also  
an important aspect that factors in the decision 
of which infrastructure the application should 
ultimately be run in. For instance, if a farmer 
needed to know whether the next morning's 
temperature was going to be below 27 degrees 
(Muhollem, 2017), the farmer would need to receive  
the application output before the morning would 
come in order to successfully safeguard his 
blossoming crop. For such applications, it is 
more suitable to carry out the execution on HPC 
rather than Cloud since the computation will be 
completed earlier on HPC (assuming a suitable 
level of parallelization has been introduced).  

Source: Pavel Hájek (http://www.wirelessinfo.cz) and Dr. Karl 
Gutbrod (https://meteoblue.com)

Table 2: Requirements of selected applications.

Applications Agroclimatic-zones 
frost date calculation

Morphometry 
characteristic 
calculation

Storage 
requirements

316 MB 
(ERA5-Land Czechia)

25 GB (Austria Area)  
1 TB (Full Europe)

Computation time 
in core-hours 70 (Czechia)  3000 (Full Europe)

Results of benchmarking tests of parallel 
agroclimatic-zones algorithm

In order to properly benchmark the paralel 
agroclimatic-zones algorithm, we strived to test 
it on an input with size and complexity consistent 
with those to be found when the algorithm would be 
in production. This required making some choices 
in terms of the number of years worth of data  
and the number of pairs of latitude/longitude values 
to be processed.

After some experimentation, it was found that  
the serial agroclimatic-zones algo-rithm was 
able to process 12-15 years worth of input data  
and 64-256 pairs of latitude/longitude values  
in the order of 2-85 hours. This range of execution 
time and problem size seemed like a reasonable  
starting point for experimentation, while also 
allowing us to more clearly showcase the capability 
of HPC to improve perfor-mance of a typical 
medium to large scale application. Therefore, all 
benchmarking experiments presented here were 
conducted with either 64 (i.e., smaller input problem 
size) or 256 (i.e., larger input problem size) pairs  
of latitude/longitude values (Figure 14) and 12 
years worth of input data.

Benchmarking of the parallel algorithm 
was performed in HLRS Hawk. A standard 
compute node from this infrastructure con-sists  
of a single 2.25GHz, 64-core AMD Epyc Rome 
7742 processors with 256 GB memory. Each  
of the cores in the proces-sor supports 2 hardware 
threads (also known as hyperthreading), meaning 
that a single node can execute up to 128 threads.

In order to determine the performance of the parallel 
algorithm, the total execution time  of the program 
(after all MPI processes had finished execution) 
was measured. The parallel algorithm was run 
on 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 MPI 
processes on one node with the exception of 256 
and 512 processes which were run on 2 an 4 nodes. 
As shown in Figure 14, the parallel algorithm ran 
with 64 pairs on input data reached the lowest 
execution time of approximately 2min 30 sec  
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with 64 MPI processes. When run with a input 
problem size of 256 pairs of lati-tude/longitude 
values, the parallel algorithm managed to record 
the same low execution time as with the smaller 
input problem size, but using 256 MPI processes. 
Considering that the serial algorithm reported  
an execution time of approxi-mately 2h10min  
with 64 input pairs of latitude/longitude values,  
and 8h with 256 pairs, the parallel algorithm 
achieved a maximum speedup of approximately 
52 times with the smaller input problem size,  
and speedup of approximately 182 times  
with the larger input problem size.

Overview of metrics collected during program 
execution in HLRS Hawk

The metrics collected in Prometheus in the current 
implementation of the parallel agroclimatic-zones 
algorithm are the amount of data transferred  
by the Data Mover, and the average bandwidth 
on each request of transfer of a set of files  
(i.e., it can consist of multiple files or a single 
one). Additional metrics related to the performance  
of the applications are also automatically collected. 

The Data Mover was tested by transferring test files 
with different sizes (i.e., 100MB, 1GB, and 10 GB) 
between the Cloud resources of ATOS in France 
and HPC resources of HLRS in Germany. The test 
files contained random data in order to avoid data 
compresion. The typical band-width measured  
with GridFTP transfers was between 70  
and 90 MB/s. However, it is not possible to use these 

results to pre-dict the future performance of a given  
transfer because it will ultimately depend  
on the network load in the internet as well  
as in the data centers (Figure 15 and 16).

Source: own research and processing
Figure 15: Number of MPI processes vs. Execution time. Input 

data is 64 (shown by dashed line)or 256 (shown by the solid 
line) pairs of latitude/longitude values and 12 years worth  

of ERA5-Land data.

  Source: own research and processing
Figure 16: Number of MPI processes vs. Speedup. Input data is 
64 (shown by dashed line) or 256 (shown by the solid line) pairs 
of latitude/longitude values and 12 years worth of ERA5-Land 

data.

Source: Screenshot from http://climatic-patterns.test.euxdat.eu
Figure 14: Map showing boundaries of grid of latitude and longitude values processed  

by the agroclimatic-zones algorithm representing a relatively small (shown by yellow rectangle)  
and large (shown by orange rectable) problem size in this study. Assuming a spatial resolution  

of 0.1x0.1° between these boundary values, the yellow rectangle corresponds to 64 pairs of latitude/
longitude values (or grid points), while the orange rectable correspondes to 256 pairs of latitude/

longitude values. 
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Analysis of results

The infrastructure platform proposed within  
the context of the EU projects discussed in the paper 
currently satisfies all the re-source requirements  
for the agroclimatic-zones pilot, and no deficiencies 
could be detected.

The benchmarking tests of the parallel algorithm 
used for deploying the agroclimatic-zones pilot 
have clearly demonstrated the power of HPC  
for parallelizing data-intensive applications. 
Thanks to the proposed parallelization strategy  
and by running the application on multiple compute 
nodes of an HPC cluster, the final parallel algorithm 
was 52 times faster than the original sequential 
program for a relatively small yet realistic input 
size. Put in a different perspective, these results 
al-ready means that a user can now execute  
his/her program in a couple of minutes instead  
of several hours. Considering that an even greater 
speedup (i.e., approximately 182 times faster than 
sequential pro-gram) was achieved when problem 
size was quadrupled (i.e., 256 pairs of latitude/
longitude values is doubled) as well as the number 
of MPI processes, these results indicate that  
the parallel algorithm scales well with problem size. 
This strong-ly suggests that the newly developed 
algo-rithm presented in this paper is a very efficient, 
parallel algorithm that should be of general interest 
to the geoprocessing community.

Based on the results and the evaluation presented 
in this study it can be argued that the proposed 
framework simplifies the deployment and execution  
of geoprocessing tasks. Thanks to its data 
moving approach and the use of HPC resources,  
the framework is able to achieve an efficient 
transfer of data and computation in a significantly 
smaller amount of time, therefore also reducing 
costs.  Based on the current body of knowledge  
the proposed framework seems to be very  
cost-effective for geoprocessing and is particularly 
suitable for large projects such as large scale studies 
conducted by governments. It is also attractive 
for companies interested in selling the results  
of geopro-cessing to small customers that do not 
have access to the data or the software necessary 
for running applications by themselves.

Conclusions
In this paper, an open source framework 
underpinned by an infrastructure suitable for HPC 
and Cloud computing of geopro-cessing services 
has been described. We have demonstrated that  
the infrastructure can support the execution  
of realistic use cases within the context of several 

EU projects, and achieve large speedup (up to 182 
times) when running data-intensive applications.

The solutions being developed by the EU 
projectsshowcased in the paper will greatly 
support improving farming performance  
and competitiveness. This is not only because 
the developed tools are fit for purpose, but also 
because they leverage time-efficient computational 
resources. These tools will exhibit a simplified 
access for non-technical users. They are attractive 
also for customers that do not have access  
to the data, software or hardware needed. Moreover, 
the intention is that the developed platforms will 
stay operational after the end of the respective 
projects. In particular, the partners in the projects 
are in-terested in using them for selling their 
products, such as datasets and weather forecasting 
services directly to farmers after the respective  
projects are over. In order to ensure this,  
the consortium part-ners are committed to perform 
the roles of software, HPC and Cloud platform 
provid-ers after the projects are over.

Additionally, it should be noted that the developed 
platform for agriculture geo-processing is also 
suitable for other pur-poses than agriculture, such 
as providing optimum paths through transportation 
networks, predicting disasters like wildfire  
and flooding, or the effects of a storm. Considering 
this broader scope, potential users can therefore 
also include local au-thorities interested in urban 
and regional planning and water management,  
or insurance companies interested in risk prevention 
or disaster resilience.
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