
[61]

Agris on-line Papers in Economics and Informatics

Volume XII Number 4, 2020

Open Source Framework for Enabling HPC and Cloud Geoprocessing
Services
José Miguel Montañana1, Paolo Marangio2, Antonio Hervás3

1 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany
2 ATOS Research and Innovation (ARI), AI, Data & Robotics Unit, Madrid, Spain
3 Inst. Matemática Multidisciplinar (IMM), Universitat Politècnica de València, Spain

Abstract
Geoprocessing is a set of tools that can be used to efficiently address several pressing chal-lenges
for the global economy ranging from agricultural productivity, the design of transport networks,
to the prediction of climate change and natural disasters. This paper describes an Open Source Framework
developed, within three European projects, for Ena-bling High-Performance Computing (HPC) and Cloud
geoprocessing services applied to agricultural challenges. The main goals of the European Union projects
EUXDAT (EUro-pean e-infrastructure for eXtreme Data Analytics in sustainable developmenT), CYBELE
(fostering precision agriculture and livestock farming through secure access to large-scale HPC-enabled
virtual industrial experimentation environment empowering scalable big data analytics), and EOPEN
(opEn interOperable Platform for unified access and analysis of Earth observatioN data) are to enable the use
of large HPC systems, as well as big data management, user-friendly access and visualization of results.
In addition, these projects focus on the development of software frameworks, and fuse Earth-observation data,
such as Copernicus data, with non-Earth-observation data, such as weather, environmental and social media
information. In this paper, we describe the agroclimatic-zones pilot used to validate the framework. Finally,
performance metrics collected during the execution (up to 182 times speedup with 256 MPI processes)
of the pilot are presented.

Keywords
High performance computing, cloud computing, big data; agriculture, land monitoring, geoprocessing.

Montañana, J. M., Marangio, P. and Hervás, A. (2020) “Open Source Framework for Enabling HPC
and Cloud Geoprocessing Services", AGRIS on-line Papers in Economics and Informatics, Vol. 12, No. 4,
pp. 61-76. ISSN 1804-1930. DOI 10.7160/aol.2020.120405.

Introduction
Geoprocessing is a set of tools, generally intended
for the mathematical processing carried out
by a Geographic Information System (GIS). These
tools consist of es-sentially three parts, as shown
in Figure 1, namely data storage, computational
pro-cessing, and visualization or access to re-sults.

During the last decades, the results of geo-processing
have greatly improved thanks to the exponential
technological progress in computational power.
However, improving the efficiency of agricultural
productivity requires solving the techno-logical
challenge of increasing both the amount of data
to be stored and the com-putational load by several
orders of magnitude.

In order to tackle these challenges, during

the last decades, researchers and professionals
in the area have worked towards im-proving overall
code performance in several ways, including
parallelization of code libraries, structuring
of the data, as well as balancing the computational
load in clusters of computers (Figure 1).

Source: own research and processing
Figure 1: Fundamental components of geoprocessing systems

and their interrelationship.

[62]

As a result, MPI and OpenMP now
represent some of the most popular tools
for code paralleliza-tion. And more recently,
cloud computing and High-Performance
Computing (HPC) have become the standard
for Big Data processing. In particular, HPC systems
are currently able to provide the best computing
performance as well as enhanced data sharing
between computing nodes (Mi-neter et al., 2000;
Zhang, 2010; Li, 2020).

In the next sections, we define some theoretical
and practical concepts that need to be considered
for an efficient use of HPC systems.

Hardware for HPC

One important difference between HPC
and Cloud systems is their interconnection
network. Most modern HPC systems are clusters
of Symmetric Multi-Processing (SMP) nodes
with high-speed interconnection network, which
eases the collaborative computation between
nodes as well as the sharing of data between them.
On the other hand, Cloud computing nodes have
lower performance interconnection networks than
HPC. Therefore, the parallelized applications
running in Cloud should have less communication
between nodes in order to not lose performance.

A SMP node consists of multiple identical
processing elements, with identical memory
access. The memory inside of the nodes allows
strongly coupled processing and communication.
The computation carried out among multiple nodes
will have higher communication latency between
cores when they are on different nodes and higher
memory access latency when the data required
by one node is stored in the memory of another
node.

Parallelization Strategies for HPC

There are two main resources that can
be distributed: the processing elements
and the memory. Considering this, the parallelization
of an hypothetical application will consists
in deciding how to distribute the computational
load among the processing elements, and how
to distribute the data when using more than one
node (case of distributed memory).

The distribution of the computation load and data
requires defining how the internode communication
will be performed, which is a very important aspect
to take into account. Inefficient communication
can make the processing elements stay idle while
waiting for data from other processing elements
or memory, which will produce an inefficient

use of processing elements and therefore extend
the execution time. Montañana (2010) provides
more details on HPC architecture
and interconnection networks.

MPI and OpenMP are some of the most popular
libraries and tools used for HPC systems. MPI is
typically used for distributed memory systems.

Parallelization performance

A hypothetical application can be divided into two
parts, namely the part that needs to be executed
sequentially (s), and the part that can run in parallel
(p). Equation 1 represents the decimal fraction
of that distribution, where 1 stands for the total,
and s and p values are between 1 and 0:

1 = s + p	 (1)

Figure 2 describes the above concept pictorially,
by showing an application that exhibits the potential
of running 50% of its code in parallel (green bar
in the figure). The figure shows that the total
execution time becomes smaller as the number
of used cores is increased. This is because
the part of the code that runs in parallel is split
evenly among the processors that execute their
respective portion of the code concurrently.

Source: own representation of the Amdahl’s law (Amdahl, 1967)
Figure 2: Reduction of execution time and increase

of Speedup with the increase of the number of cores used.

The figure also illustrates the concept of Speedup
(in latency), which corresponds to the ratio between
the execution time sampled when the application
is executed using only one core, and when using
an increased number of them. Calculating the
Speedup is useful for determining the im-pact
of specific code changes on perfor-mance.
Equation 2 shows how the Speedup is calculated
as the division of Equation 1 for one and n
processes, where n is the number of cores used,
or the number of parallel executions of the part
of the appli-cation that can be parallelized.
This equa-tion is a formulation of Amdahl's law
(Amdahl, 1967).

 	 (2)

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[63]

From this, it follows that the execution
time of a parallelized application is given
by the execution time required to run the sequential
part of the application plus the execution time
of the parallelized part. This also means that
the proportion of the application that can be
executed in parallel dictates the theoretical
maximum Speedup that can be achieved by a given
parallel application.

Figure 3 shows the Speedup for different proportions
of an application that can be parallelized. The ideal
case where 100% of an application is parallelized
is virtually impossible to attain due to software
and hardware limitations, such as communication
latencies and parallelization overheads.

Source: own processing of the Amdahl’s law (Amdahl, 1967)
Figure 3: Speedup for different proportion of application being

parallelized. The slopes of the curves are reduced from the point
where the improvements no longer have a significant impact
on the total run time. The curves saturate at the level where

practically all the execution time is due to the non-parallelized
part of the code.

Our experience has taught us that achieving
performance improvement is relatively simple when
the proportion of code being parallelized is small
and the parallel code is executed on a small number
of cores. However, the improvement becomes more
difficult to achieve as the number of cores required
for a given parallelization strategy increases.
For this reason, there is a trade-off between
the effort of parallelization and the performance
improvements that can be obtained through
parallelization. The most frequently used
applications should also be the ones that receive
the most parallelization efforts.

Contributions of the paper and overview of EU
projects

In this paper, we significantly extend on our
previous description of the Open-Source framework
for enabling HPC and Cloud geoprocessing
services (Montañana et al, 2020b). We will also
show some preliminary results obtained by running

the agroclimatic-zones pilot within the framework
in the supercomputer Hawk at High Performance
Computing Center Stuttgart (HLRS).

The main contribution of this paper is to showcase
the latest developments in the creation of innovative
platforms that solve several technological
challenges that are relevant to geoprocessing,
such as the integration of data from different
origins and formats, the definition of interfaces
for geoprocessing applications, and the capability
of executing such applications on modern
computing solutions like HPC and in the Cloud.
Addressing these challenges requires
a consideration of additional aspects such
as allowing larger data transfer, and the
enforcement of secure access and control of the data
and the computational results.

All these challenges are of definite relevance
to the EU projects EUXDAT (EUXDAT, 2020),
EOPEN (VEOPEN, 2020), and CYBELE
(Davy et al., 2020). In fact, these projects focus
on developing solutions for the collection of big
data from different sources, data transfer
to large-scale HPC and Cloud Computing
infrastructures for processing, the development
of visualization tools as well as secure access
to computational results.

In the next subsections, we provide a summary
of the goals of the three projects:

EUXDAT

EXUDAT proposes an e-Infrastructure for enabling
Large Data Analytics-as-a-Service, which addresses
the problems related to the current and future huge
amount of heterogeneous data to be managed
and processed within the agricultural domain.
EUXDAT builds on existing mature components
by providing an advanced frontend, where users
develop applications on top of an infrastructure
based on HPC and Cloud. The frontend provides
monitoring information, visualization, different
distributed data analytic tools, enhanced data
and processes catalogs. EUXDAT includes a large
set of data connectors such as Unmanned Aerial
Vehicles (UAVs), Copernicus, and field sensors
for scalable analytics. Figure 4 shows the type
of field sensors deployed for the EUXDAT project
in farming areas. These instruments (Pessl,
2020) allow collection of a wide range of data
about remote are-as, such as depth of precipitation,
air tem-perature, air humidity, global radiation,
wind speed, soil temperature, and leaf wetness.

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[64]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

Source: own processing, pictures took by authors
Figure 4: Example of a typical field sensor deployed in farming
areas proposed within EUXDAT project. The sensor shown is
an iMETOS 3.3 data logger developed by Pessl Instruments

GmbH.

As for the brokering infrastructure, EUXDAT aims
at optimizing data and resource usage. In addition
to a mecha-nism for supporting data management
linked to data quality evaluation, EUXDAT
proposes a method to orches-trate the execution
of tasks that is able to identify whether the best
target for execut-ing a given application is HPC
or Cloud. It uses monitoring and profiling
information for making decisions based on trade-offs
related to cost, data constraints, efficiency,
and resource availability. During the pro-ject,
EUXDAT is in contact with scientific communities,
in order to identify new trends and datasets,
for guiding the evolu-tion of the e-Infrastructure.
The result of the project will be an integrated
e-Infrastructure that encourages end-users to create
new applications for sustainable development.

EUXDAT demonstrates real agriculture
scenarios, land monitoring, and energy efficiency
for sustainable development, as a way to support
planning policies.

CYBELE

CYBELE is a European research project combining
Agriculture, HPC, and Big Da-ta. It involves
31 research institutes and enterprises across EU
countries. It stands for "Fostering Precision
Agriculture and Livestock Farming through
Secure Access to Large-Scale HPC-Enabled
Virtual Industrial Experimentation Environment
Empowering Scalable Big Data Analytics" (Perakis,
2020).

CYBELE generates innovation and creates value

in the domain of agri-food, and its verticals
in the sub-domains of Precision Agriculture (PA)
and Precision Livestock Farming (PLF) specifically,
as demonstrated by the real-life industrial cases
to be supported, empower capacity building within
the industrial and research community. The project
aspires at demonstrating how the convergence
of HPC, Big Data, Cloud Computing and the Internet
of Things (IoT) can revolutionize farming, reduce
food scarcity, increase food supply, bringing social,
economic and environ-mental benefits. It develops
large scale HPC-enabled testbeds and delivers
a distributed big data management architecture
and a data management strategy.

EOPEN

The objective of EOPEN is to fuse Earth
Observation (EO) data with multiple,
heterogeneous, and big data sources, in order
to improve the monitoring capabilities of the future
EO downstream sector. EO data consists
of the Copernicus and Sentinel data, while
the non-EO data is weather, environmental,
and social media infor-mation.

The fusion between these diverse types of data
is carried out at the semantic level, to provide
reasoning mechanisms and in-teroperable solutions,
through the seman-tic linking of information.
The processing of large streams of data is based
on open-source and scalable algorithms in change
detection, event detection, data clustering, which
are built on HPC infrastructures.

Alongside this enhanced data fusion ap-proach,
an innovative architecture over-arching
Joint Decision & Information Governance is
combined with the tech-nical solution to assist
with decision making and visual analytics. EOPEN
is demonstrated through real use case scenarios
in flood risk monitoring, food security, and climate
change monitoring.

Materials and methods
Platform implementation

The common goal shared across these projects is
to develop a sustainable approach that facilitates
access to data, geoprocessing applications,
state-of-the-art solutions for big-data management,
as well as computational resources provided
by Cloud platforms and HPC centers.

Therefore, the target of the implementation
of the platform is to provide an open source system
that can be used on HPC and Cloud computing

[65]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

systems for hosting commercial applications
or products, as well as to ensure continuity
in the use of a given platform after the respective
EU project has been finalized. For example,
although it may not be apparent, the reason
for including support for accounting and billing
in such platforms is to facilitate the future reuse
of code. In fact, in order to ensure that a given
piece of code can be successfully reused later
in time, the costs of using large computer
systems, as well as the cost of data acquisition
from proprietary sources must be already considered
during the development stage.

Figure 5 illustrates the main components
of a typical infrastructure platform as well as
their interrelationship. Each of the components
in a given infrastructure platform has a clearly
defined User Interface (UI).

Source: own research and processing
Figure 5: Representative infrastructure platform for the three EU

projects described in the paper.

Portal UI API

The first component encountered by the user
is the Portal User Interface (UI) Application
Programming Interface (API). The portal UI API
provides users with a list of available applications
and the data catalog available for them.
This component supports the development
of applications such as mobile devices or web
interfaces while abstracting away the complexity

of the other components. For example, the user
does not need to consider neither the complexity
or format of the data, nor the different data
sources, because it is encapsulated by the platform
internally. Thus, once the user selects the task
to perform, such as the prediction of temperature
for a particular land area on a particu-lar date,
the user just waits for the result. Needless to say,
the time needed until a response is received is
reduced by multiple orders of magnitude when
using a large-scale HPC system.

Data Catalog

The data catalog collects data from different data
sources, which may or not be free of charge.
Similarly, the catalog of applications may
include free applications such as those developed
and hosted within the platform of a given project,
or commercial applications. This is done in order
to ad-vertise the platform to third parties that may
wish to use its services in order to commercialize
applications or data.

Orchestrator

The user request is submitted to the orchestrator,
which is responsible for the transfer and execution
of the applications on the computing resources.
Based on the user request, the orchestrator selects
the appropriate computational resource (i.e. HPC
or Cloud) onto which to execute the task.
Orchestrators such as Cloudify typically use
an application model Domain Specific Language
(DSL) based on Topology and Orchestration
Specification for Cloud Applications (TOSCA),
which encourages modularity of applications.
This is encoded in the `blueprint' files, in which
the orchestrator packages the specifica-tions
of the user parameters, the input and output
files, as well as the binary files to be transferred
into the computational re-sources. A fragment
of a blueprint is shown in Listing 1. In particular,
Cloudify provides a user-friendly GUI that allows
to easily manage blueprint files and associat-ed
deployments (Figure 6). Moreover, the blueprint
file allows the orchestrator to delegate the required
staging of input and output data to the Data Mover
component.

For instance, the data_mover_options fields
in the blueprint specify the files to be transferred,
as well as the source, desti-nation, and the user
credentials.

In addition, the orchestrator’s API allows
the execution to be requested from a user-friendly
web interface as shown the next sections.

[66]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

Source: Screenshot from http://cloudify-api.test.euxdat.eu/console
Figure 6: Cloudify GUI. Cloudify offers an intuitive GUI that enables users to upload blueprints, create deployment.

The GUI also gives an overview of the number of compute nodes and running execution.

Hybrid orchestrator

Many applications that run on HPC are usually
part of bigger workflows that run in the cloud, such
as those with tightly-coupled data or extensive
big data analytics. In a similar fashion as for micro-
services applications running solely in the Cloud,
an automatic hybrid deployment and management
of a modularized application in HPC and Cloud
is expected to optimize the overall performance
and enable new development architectures.
In order to address this technical gap, the AI,
Data & Robotics Unit (former Advanced
Parallel Computing lab) Lab at ATOS Research
and Innovation (ARI) Spain has recently developed
within the EUXDAT project a plugin for Cloudify
called Crou-pier (Carnero and Nieto, 2018) written
in Python that adapts the Cloudify orchestrator
algorithm for the management of HPC resources,
so that Cloudify can orchestrate a hybrid
environment including both Cloud and HPC.
Croupier has been developed to essentially bring
the latest and greatest features that have been
enabled by Cloud architectures, such as modularity,
interoperability, software as a service (SaaS),
infrastructure as code (IaC), con-tinuous integration
and deployment (CI/CD), to the world of HPC.
Thanks to Croupier, it is for example possible
to run batch applications on both HPC and Cloud.

Data mover

The size of the data files requires an efficient
transfer method for transferring them into the
computational resources.The current network
protocol used for such pur-poses in centers like
HLRS is GridFTP. Published results show that
GridFTP pro-vides better performance, between
5 and 10 times faster, than the standard FTP
protocol (Esposito et al., 2003). Other ad-vantages
of using GridFTP include the security provided
based on x509 certificates and the capability
to carry out third party transfers (Figure 7).

node_templates:
job:
 type: croupier.nodes.job
 job_options:
 type: "SRUN"
 command:"coordinates.txt"
 nodes: 100
 max_time: "04:00:00"
data_mover_options:
 workspace: wsdata
 create_ws: TRUE
 source: "ATOS"
 destination: "HLRS"
 source_input: demo_cloud_folder
 dest_output: demo_hpc_folder
 grid_userkey:
 --BEGIN ENCRYPTED PRIVATE KEY--
 ...
 --END ENCRYPTED PRIVATE KEY--
 grid_usercert:
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

Source: own research and processing
Figure 7: Example of a fragment of a TOSCA blueprint file.

Figure 8 shows the main elements and their
communication in a GrdiFTP third party transfer.
The concept consists of a client point from where
the transfer is re-quested, but the data does not
have to traverse it as in other protocols. Instead,
the data is directly transferred between servers
(servers A and B in the figure) using multiple
communication channels in parallel. This protocol
already proved better performance on data transfers
performed over the internet because it allows using
the high bandwidth available in the communication
channels in the servers, by multiplexing the traffic
over multiple channels in the internet that have
lower bandwidth. It is highly desired to avoid
using any intermediate storage, because it requires
storage space, which slows down the data transfer.
For that reason, we ex-plored the state of the art
on large-scale data management solutions that
support the GridFTP network protocol.

[67]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

The most advanced tool for using GridFTP that we
could find was Rucio. Rucio is an open source tool
developed within the context of the ATLAS project
for manag-ing big data at the European Organization
for Nuclear Research (CERN). It is cur-rently used
to transfer more than one petabyteworth of data
per day, and more than one million files per day
(Serfon, C. et al., 2019). However, after performing
detailed evaluation we identified two ma-jor issues
in using Rucio and therefore decided to develop
our own plugin instead. The first issue is that Rucio
does not allow running third party transfers. The
second one is that Rucio cannot handle recursive
directory transfers, when defining the des-tination
folder (non-deterministic model). Although
an alternative exists (determinis-tic model, where
Rucio creates folders labeled with an alphanumeric
string), it still makes it difficult to integrate the tool
with our framework.

Source: own figure based on the GridFTP protocol (www.
globus.org)

Figure 8: GridFTP direct third party transfer. Client requests
a site-to-site direct data transfer. The transfer is multiplexed

among multiple channels.

The development of the Data Mover plugin in place
of usring Rucio allowed us to fulfill our
project requirements as well as its integration
with the other compo-nents. Its implementation
is based on the use of the Globus-Client
(SURFsara, 2015) and uberFTP (NCSA, 2020).
The Data Mover plugin has been developed within
the EUXDAT project and is now an inte-gral part
of the Croupier plugin for Cloudi-fy (Montañana
and Gorroñogoitia, 2020a). The Data Mover plugin
supports GridFTP direct data transfers between
data sources and computational resources without
intermediate staging, as required for the previously
described pilot and use cases.

HPC and Cloud Computing

HPC and Cloud computing systems exhibit
differences in terms of performance and cost.
Moreover, the implementation of a given application
on either of these sys-tems may differ significantly
in order to achieve the best performance
and resource utilization.

An HPC system consists of a large number
of compute nodes that are physically close to each
other (ideally all in the same room) with a high-
performance interconnection network running

between them. Figure 9 outlines the different nodes
a user application goes through when it is submitted
to an HPC system.

HPC systems rely on low-latency communication
to share computational results between compute
nodes. Moreover, HPC systems tend to have higher
costs than Cloud systems for executing applications,
due to the high cost of the interconnection network
as well as the maintenance cost incurred due
to having to run cooling sys-tems needed
to dissipate the large heat generated by the hardware
that is physically located in a relatively small space.

On the other hand, Cloud computing systems
consist of different types of physical hardware
(e.g., networking equipment, load balancers,
servers) that can be located in different geographical
locations. Virtual-ization is also typically employed
in such systems in order to connect servers together,
and also to divide and abstract resources in order
to make them accessible to users. Cloud computing
systems typically do not require a high-performance
interconnection network between compute nodes,
and as these are not located in the same space Cloud
computing systems do not incur additional costs
for cooling systems.

Applications executed in HPC centers typically
show better performance than those executed
in the Cloud. However, in order to make efficient
use of resources additional effort is needed
in order to `parallelize' applications. Parallelizing
an application essentially entails spreading
the workload among different computing nodes.
On the other hand, applications to be executed
in the Cloud can be easier to implement as it is
possible to simply submit replicas of the same
application as different independent jobs, each
targeting a different portion of input data.

Source: own research and processing
Figure 9: Different nodes involved in the execution
of an application in an HPC system. User uploads

the application on a `frontend' node. The job is then dispatched
to a scheduler node that manages where and when it will be run.

The computation nodes, highlighted in green, are responsible
for running jobs.

[68]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

Although using HPC systems may lead to greater
performance than Cloud computing systems, it
requires higher implementation efforts and costs
for execution. Hence, there is not a general agreement
on which system to run a given application on,
and it is up to the user to decide what to trade
between implementation effort and execution cost.

Monitoring

In order to improve future application executions,
the metrics related to the utilization of different
resources are registered into a monitoring server
such as Prometheus. Using an open source system
moni-toring and alerting toolkit such as Prome-
theus facilitates the decision of where to allocate
future task requests depending on specific user
constraints, such as reduced computation time
or cost. Figure 10 shows the overall monitoring
process, which includes collection of metrics
at the computation nodes, storing the metrics
in a Prometheus server (with metrics being pushed
by the Pushgateway plugin to the server if they
cannot be directly sampled at the computation
nodes by Prometheus), and accessing the stored
data through the Grafana visualization interface.
This system allows to inspect metrics in real time
as soon as they are stored in Prometheus.

Source: own research and processing. Logos of Pushgateway,
Prometheus, Grafano took from https://prometheus.io and
https://grafana.com

Figure 10: Collection and access to the monitored metrics.

Node

Node

Node

Prometheus

PushGateWay
Plugin

Grafana

Visualization
Dashboards

Computation
nodes

Monitored
metrics

Server for storage of metrics
and visualization interface

Once the computation is completed
and the monitoring metrics have been collected,
the results are moved into a repository that can be
accessed by the user, and the user is notified.

Use cases and pilots

The three EU projects presented above are focused
on the development and testing of solutions
for the field of agriculture. Agriculture is a key
player in economic and political stability.

Because of its importance, governments are funding
the development of solutions data access systems,
geoprocessing, and tools for decision making.

The different uses cases demonstrate the capacity
of the HPC solutions proposed across the projects.

The use cases cover a wide range of real-life
applications ranging from detection of weather
conditions, humidity or crop dis-eases, to precision
agriculture, livestock farming, and exploration.
In the next sections, we provide a brief description
of a selection of use cases. It should be noted that
access to the implementations of the use cases is
currently limited to consorti-um partners. Towards
the end of the respective projects, the use cases will
be made available for the end users commu-nities.

OpenLand monitoring and sustainable
magement

This use case aims at developing a deep learning
algorithm that uses a range of input data
for predicting soil and crop status. The input data
includes images generated by multirotor UAV
systems with a hyperspectral camera as well
as Earth observation and meteorological data.

3D Farming

This use case focuses on analytics models
within the context of spatial analysis for farming
(e.g., locating the highest productivity zones). It will

Source: screenshot from http://climatic-patterns.test.euxdat.eu
Figure 11: Web interface of the OpenLand monitoring pilot.

[69]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

provide 3D visualization for the obtained results,
which is especially helpful for understanding
different soil parameters such as amount of water,
and solved particles and nutrients (Figure 11).

Organic soya yield and protein content prediction

There is a strong interest in the predictive analytics
of soybean farming, mainly because the EU is
strongly dependent on other continents for sourcing
plantbased proteins. In light of this, this use case
develops methods for predicting maps indicating
soybean yield and protein-content based on crowd-
sourced data, satellite imagery, and additional
information if available, such as electromagnetic
soil scans and other sensory data.

Climate-smart predictive models for viticulture

This use case addresses the development
of complex, highly-nonlinear models for vine
and grape growth, which rely on a large number
of variables that have been shown to affect
the quality and quantity of the produced yields.
The range of input data includes soil/elevation
maps, earth observations, genomics, chemical
analysis, environmental and climatic data.

Climate services for organic fruit production

This use case aims at helping with the prevention
of damaging effects caused by frost and hail.
The solution under development focuses
on providing risk probability mapping calculated
based on models obtained by machine learning
techniques.

In order to train the predictive model, a wide range
of data sources are used including but not limited
to climate instability indices, digital terrain
models, in-situ environmental and climatic data,
and satellite images.

Optimizing computations for crop yield
forecasting

This use case aims at developing a crop yield
monitoring tool that can be used for agricultural
monitoring (e.g., early warning and anomaly
detection), index-based insurance (index estimates),
and farmer advisory services. Its goal is to compute
a productivity estimation based on cropping systems
model and a combination of different datasets, such
as ingest crop, soil, historic weather, and weather
forecasts data. The computation underlying this
use case becomes more challenging as the amount
and resolution of available data are increased.

Evaluation

Next, we describe the pilot used to validate the
framework. Results of the perfor-mance of the pilot
are shown after that.

Case study: Agroclimatic-zones pilot

In this section, we focus on the agroclimatic-
zones pilot for the validation of the framework
proposed in this paper. We decided to use this
pilot because at the time of writing it was one
of the most mature pilots available across
all the projects. From a computing point of view,
the algo-rithm associated with this use case
is also relatively ‘simple’ while still holding
the potential to be parallelized using one
of the parallel programming frameworks
for execution on HPC described above.

Currently, the available maps of climatic zones
are very generic and exhibit low granularity.
Although they are able to display some differences
in topography between areas, the areas shown
by such maps tend to be quite large and do not
include, for example, seaside buffer zones, weather
divides, and South-North differences.

The idea of this algorithm is to create a classification
system that allows to characterize land areas
as different agroclimatic groups, based on long-term
climate data, land cover, and topography
information.

The goal of the algorithm is to generate local
climate maps that take into account general
weather conditions (large-scale weather models),
local topography (with North/South slopes), buffer
effects (such as lakes, sea, or swamps) and soil
types.

The tool is primarily intended for:

	- Agricultural extension counselors,
or technical farm organizations wishing
to make an investment in frost protection,
irrigation, etc.

	- Insurance and other financial institutions
wishing to make decisions on quality
and risk of agricultural invest-ments.

	- Researchers interested in making
decisions related to field trial (climatic)
representativeness.

	- Researchers and advisors interested
in checking the impact of climate change
on a given area and making decisions about
future management strategies.

[70]

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

The expected frequency of use for the tool is once
per year, while the type of data queries could
be either local or regional (e.g., comparisons
of several sites). By using the proposed tool it will
be possible to predict long-term climate changes,
which will in turn allow to make better-informed
long-term decisions about crops and use resources
more efficiently. One example of this is frost
protection. In the past few years, significant parts
of the Central EU Orchard and Vineyard industry
have been affected by late frosts, which required
making critical decisions about anti-frost protection
measures, varietal changes, and risk mitigation
strategies (Vitasse and Rebetz, 2018). In the rest
of the paper, the application of the tool
for computing frost-related information that may be
useful in frost protection and management will be
presented.

Inputs to the algorithm

The algorithm takes as inputs two different
types of data as well as a set of input parameters
provided by the user. The first piece of input data is
meteorological data in the ERA5-Land (ECMWF/
CDS) or NEMS30 (Meteoblue AG) format/model.
The data is encoded in NetCDF files used as input
data in the algorithm. The second piece of input
data is optional and it includes topography maps
(EU-DEM format) and land cover/soil maps (Joint
Research Center or Open Land Use Map).

The input parameters provided by the users are:

	- Area of interest encoded by polygon drawn
over map presented to the user

	- Start year
	- End year
	- Probability of first/last frost day
	- Frost temperature (in degree Celsius)
	- Daily hours with minimum tempera-ture:

start hour, end hour (0-23)
	- Length of stretch of last and first frost days to

be found for a single year

Output of the algorithm

The output of the algorithm is a set of values
corresponding to agroclimatic variables calculated
based on the input data and user input parameters.
For every point in the polygon specified by the user,
the algorithm computes the following:

	- Last spring frost date
	- First fall frost date
	- Length of frost-free season

	- Number of frost days
	- Average number of frost days for the period

spanning the start and end year

The output information is stored as a GeoJSON file.

Proposed parallelization strategy

At the smallest level, the agroclimatic-zones
algorithm calculates, for a given position
on the map identified by a pair of latitude
and longitude values, the first and last frost date
for each year over a user-defined range of years.
From a programmatic point of view (Figure 14).
This is achieved through the sequential invocation
of three nested functions, with information
for a single year and grid point in latitude
and longitude dimensional space being computed
by the innermost function (findfrostdates), followed
by an intermedi-ate function that aggregates this
information across multiple years (frostdateyearly).
Finally, the outermost function invokes the two
inner functions over mul-tiple points in latitude and
longitude dimensional space (frostdatesplaces).
Since for a typical execution of the algorithm
the number of years (maximum value is 37) tends
to be much smaller than the total number of pairs
of latitude /longitude val-ues (maximum value
for this study was 70 longitude values x 27
latitude values = 1890 grid points), it seemed
more intuitive to perform a parallelization
of the outermost function frostdatesplaces, such
that each MPI process would essentially be
responsible for calculating the output in-formation
for an independent pair of latitude/longitude values.
Parallelizing this function would not break the code
or cause bottlenecks because the computations
for different pairs of latitude/longitude values
are independent and can, therefore, be performed
asynchronously. Hence, we essentially used MPI
to schedule parallel execution of an identical
computation (with the only difference being
the input grid point of latitude/longitude values)
over multiple processes, rather than using point-
to-point communication for directly improving
the performance of the serial/sequential
agroclimatic-zones algorithm.

Even if the serial application was written
in Python, introducing the proposed changes was
easily achieved by using the Message Passing
Interface (MPI) for Python package (Dalcin, 2019)
(Figure 12).

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[71]

Source: screenshot from http://frostdates.test.euxdat.eu
Figure 12: Web interface of the agroclimaatic zones pilot.

Results and discussion
Application requirements evaluation
for execution of parallel agroclimatic-zones
algorithm in HPC

The resource requirements for the agroclimatic-
zones can be evaluated considering
the infrastructure in which the algorithm will
be implemented and finally executed. All
of the projects have access to the Hewlett Packard
Enterprise Apollo 9000 Hawk supercomputer
available at the HPC Center in Stuttgart (HRLS).
Table 1 shows the key features of Hawk, which was
launched in February 2020.

Source: https://www.hlrs.de/systems/hpe-apollo-9000-hawk
Table 1: Characteristics of the HLRS Hawk HPC system.

Name HPE Apollo 9000 Hawk

Number of node 5,632

Number of cores 720,896

Peak performance 26 Petaflops

Disk storage capacity 25 PB

Interconnection net InfiniBand HDR (200Gbit/s)

Power consumption 2112 KW, to be increased

The simultaneous use of HPC systems by a large
number of users requires that each user's execution
request includes a specification of the number
of computing nodes and software to be used.
After a request for execution is submitted,
it is queued until all the resources required
for the execution become available. Most HPC
centers need to have very high usage in order
to be viable. This, however, means that the waiting
time for the execution of a given application
can range from a few minutes to a few days
depending on the workload of the HPC center

and the resource requirements specified in a given
request. Obviously, the user is only billed
for effective compu-tation time, not for time
spent waiting in the queue. Hence, the required
computation time is an important aspect
to consider when executing geoprocessing
applications in such infrastructures. In this respect,
an option is to upload the required data
to the HPC system prior to execution as this can
save a significant amount of computation time
(and in turn cost).

Source: own research and processing
Figure 13: Pseudocode of serial agroclimatic-zones algorithm

(to be continued).

input:
 startlat, startlon, endlat, endlon, startyear, en-dyear,
 probability, frostdegree, starthourday, endhourday,
 dayinrow
output:
 firstfrosday, lastfrostday frostfreeperiod,
 numbfrostdays, avgnumbfrostdays
begin
 call function frostdatesplaces
 loop over lat & lon
 call function frostdatesyearly
 initialize nmbfrdayslist = empty list
 loop over years
 call function findfrostdates
 initialize numbfrostdays = 0
 initialize lastfrostday = 0
 initialize firstfrostday = 0
 loop over days between Jan and Jul
 initialize daymin = 50
 loop over hours
 calculate currentemp
 if currenttemp < daymin:
 daymin = currenttemp

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[72]

Source: own research and processing
Figure 13: Pseudocode of serial agroclimatic-zones algorithm

(continuation).

 if daymin <= frostdegree:
 numbfrostdays += 1
 output lastfrostday
 loop over days between Jul and Jan
 initialise daymin = 50
 loop over hours
 calculate currentemp
 if currenttemp < daymin:
 daymin = currenttemp
 if daymin <= frostdegree:
 numbfrostdays += 1
 output firstfrostday
 output numbfrostdays
 frostfreeperiod = (see next line)
 firstfrostday - lastfrostday
 output frostfreeperiod
 append numbfrostdays to nmbfrdayslist
 avgnumbfrostdays = mean(nmbfrdayslist)
 output avgnumbfrostdays

Table 2 shows the preliminary requirements of two
applications belonging to use cases from different
projects. We chose these applications because
their resource requirements are common among all
of the listed use cases. In particular, the estimated
size of data to be transferred and the computational
load of the applications for computing agroclimatic-
zones and land morphometry characteristics are
shown. Since a use case is composed of a series
of geoprocessing applications, the computational
and data storage requirements of a use case
presented here correspond to the accumulation
of the analyzed requirements of the individual
constituent applications.

While consideration must be placed in evaluating
application requirements before execution,
the execution time of an application is also
an important aspect that factors in the decision
of which infrastructure the application should
ultimately be run in. For instance, if a farmer
needed to know whether the next morning's
temperature was going to be below 27 degrees
(Muhollem, 2017), the farmer would need to receive
the application output before the morning would
come in order to successfully safeguard his
blossoming crop. For such applications, it is
more suitable to carry out the execution on HPC
rather than Cloud since the computation will be
completed earlier on HPC (assuming a suitable
level of parallelization has been introduced).

Source: Pavel Hájek (http://www.wirelessinfo.cz) and Dr. Karl
Gutbrod (https://meteoblue.com)

Table 2: Requirements of selected applications.

Applications Agroclimatic-zones
frost date calculation

Morphometry
characteristic
calculation

Storage
requirements

316 MB
(ERA5-Land Czechia)

25 GB (Austria Area)
1 TB (Full Europe)

Computation time
in core-hours 70 (Czechia) 3000 (Full Europe)

Results of benchmarking tests of parallel
agroclimatic-zones algorithm

In order to properly benchmark the paralel
agroclimatic-zones algorithm, we strived to test
it on an input with size and complexity consistent
with those to be found when the algorithm would be
in production. This required making some choices
in terms of the number of years worth of data
and the number of pairs of latitude/longitude values
to be processed.

After some experimentation, it was found that
the serial agroclimatic-zones algo-rithm was
able to process 12-15 years worth of input data
and 64-256 pairs of latitude/longitude values
in the order of 2-85 hours. This range of execution
time and problem size seemed like a reasonable
starting point for experimentation, while also
allowing us to more clearly showcase the capability
of HPC to improve perfor-mance of a typical
medium to large scale application. Therefore, all
benchmarking experiments presented here were
conducted with either 64 (i.e., smaller input problem
size) or 256 (i.e., larger input problem size) pairs
of latitude/longitude values (Figure 14) and 12
years worth of input data.

Benchmarking of the parallel algorithm
was performed in HLRS Hawk. A standard
compute node from this infrastructure con-sists
of a single 2.25GHz, 64-core AMD Epyc Rome
7742 processors with 256 GB memory. Each
of the cores in the proces-sor supports 2 hardware
threads (also known as hyperthreading), meaning
that a single node can execute up to 128 threads.

In order to determine the performance of the parallel
algorithm, the total execution time of the program
(after all MPI processes had finished execution)
was measured. The parallel algorithm was run
on 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 MPI
processes on one node with the exception of 256
and 512 processes which were run on 2 an 4 nodes.
As shown in Figure 14, the parallel algorithm ran
with 64 pairs on input data reached the lowest
execution time of approximately 2min 30 sec

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[73]

with 64 MPI processes. When run with a input
problem size of 256 pairs of lati-tude/longitude
values, the parallel algorithm managed to record
the same low execution time as with the smaller
input problem size, but using 256 MPI processes.
Considering that the serial algorithm reported
an execution time of approxi-mately 2h10min
with 64 input pairs of latitude/longitude values,
and 8h with 256 pairs, the parallel algorithm
achieved a maximum speedup of approximately
52 times with the smaller input problem size,
and speedup of approximately 182 times
with the larger input problem size.

Overview of metrics collected during program
execution in HLRS Hawk

The metrics collected in Prometheus in the current
implementation of the parallel agroclimatic-zones
algorithm are the amount of data transferred
by the Data Mover, and the average bandwidth
on each request of transfer of a set of files
(i.e., it can consist of multiple files or a single
one). Additional metrics related to the performance
of the applications are also automatically collected.

The Data Mover was tested by transferring test files
with different sizes (i.e., 100MB, 1GB, and 10 GB)
between the Cloud resources of ATOS in France
and HPC resources of HLRS in Germany. The test
files contained random data in order to avoid data
compresion. The typical band-width measured
with GridFTP transfers was between 70
and 90 MB/s. However, it is not possible to use these

results to pre-dict the future performance of a given
transfer because it will ultimately depend
on the network load in the internet as well
as in the data centers (Figure 15 and 16).

Source: own research and processing
Figure 15: Number of MPI processes vs. Execution time. Input

data is 64 (shown by dashed line)or 256 (shown by the solid
line) pairs of latitude/longitude values and 12 years worth

of ERA5-Land data.

 Source: own research and processing
Figure 16: Number of MPI processes vs. Speedup. Input data is
64 (shown by dashed line) or 256 (shown by the solid line) pairs
of latitude/longitude values and 12 years worth of ERA5-Land

data.

Source: Screenshot from http://climatic-patterns.test.euxdat.eu
Figure 14: Map showing boundaries of grid of latitude and longitude values processed

by the agroclimatic-zones algorithm representing a relatively small (shown by yellow rectangle)
and large (shown by orange rectable) problem size in this study. Assuming a spatial resolution

of 0.1x0.1° between these boundary values, the yellow rectangle corresponds to 64 pairs of latitude/
longitude values (or grid points), while the orange rectable correspondes to 256 pairs of latitude/

longitude values.

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[74]

Analysis of results

The infrastructure platform proposed within
the context of the EU projects discussed in the paper
currently satisfies all the re-source requirements
for the agroclimatic-zones pilot, and no deficiencies
could be detected.

The benchmarking tests of the parallel algorithm
used for deploying the agroclimatic-zones pilot
have clearly demonstrated the power of HPC
for parallelizing data-intensive applications.
Thanks to the proposed parallelization strategy
and by running the application on multiple compute
nodes of an HPC cluster, the final parallel algorithm
was 52 times faster than the original sequential
program for a relatively small yet realistic input
size. Put in a different perspective, these results
al-ready means that a user can now execute
his/her program in a couple of minutes instead
of several hours. Considering that an even greater
speedup (i.e., approximately 182 times faster than
sequential pro-gram) was achieved when problem
size was quadrupled (i.e., 256 pairs of latitude/
longitude values is doubled) as well as the number
of MPI processes, these results indicate that
the parallel algorithm scales well with problem size.
This strong-ly suggests that the newly developed
algo-rithm presented in this paper is a very efficient,
parallel algorithm that should be of general interest
to the geoprocessing community.

Based on the results and the evaluation presented
in this study it can be argued that the proposed
framework simplifies the deployment and execution
of geoprocessing tasks. Thanks to its data
moving approach and the use of HPC resources,
the framework is able to achieve an efficient
transfer of data and computation in a significantly
smaller amount of time, therefore also reducing
costs. Based on the current body of knowledge
the proposed framework seems to be very
cost-effective for geoprocessing and is particularly
suitable for large projects such as large scale studies
conducted by governments. It is also attractive
for companies interested in selling the results
of geopro-cessing to small customers that do not
have access to the data or the software necessary
for running applications by themselves.

Conclusions
In this paper, an open source framework
underpinned by an infrastructure suitable for HPC
and Cloud computing of geopro-cessing services
has been described. We have demonstrated that
the infrastructure can support the execution
of realistic use cases within the context of several

EU projects, and achieve large speedup (up to 182
times) when running data-intensive applications.

The solutions being developed by the EU
projectsshowcased in the paper will greatly
support improving farming performance
and competitiveness. This is not only because
the developed tools are fit for purpose, but also
because they leverage time-efficient computational
resources. These tools will exhibit a simplified
access for non-technical users. They are attractive
also for customers that do not have access
to the data, software or hardware needed. Moreover,
the intention is that the developed platforms will
stay operational after the end of the respective
projects. In particular, the partners in the projects
are in-terested in using them for selling their
products, such as datasets and weather forecasting
services directly to farmers after the respective
projects are over. In order to ensure this,
the consortium part-ners are committed to perform
the roles of software, HPC and Cloud platform
provid-ers after the projects are over.

Additionally, it should be noted that the developed
platform for agriculture geo-processing is also
suitable for other pur-poses than agriculture, such
as providing optimum paths through transportation
networks, predicting disasters like wildfire
and flooding, or the effects of a storm. Considering
this broader scope, potential users can therefore
also include local au-thorities interested in urban
and regional planning and water management,
or insurance companies interested in risk prevention
or disaster resilience.

Acknowledgments
This work has been carried out within the context
of the following projects: European e-infrastructure
for extreme data ana-lytics in sustainable
development (EUXDAT); Fostering precision
agricul-ture and livestock farming through secure
access to large-scale HPC-enabled virtual industrial
experimentation environment empowering scalable
big data analytic (CYBELE); Open interoperable
platform for unified access and analysis of Earth
observation data (EOPEN).

Further information about the projects is available
at the respective web pages (Nieto et al.,
2020; Vingione et al., 2020; Davy et al., 2020).
The research leading to these results has received
funding from the European Unions Horizon
2020 Research and Innovation Programme,
grant agreements n. 777549, 825355, 776019,
respectively.

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[75]

We wish to thank Dimitrij Kozuch (Plan4all),
Pavel Hájek (WirelessInfo), Jiří Valeš (University
of West Bohemia) and Dr. Karl Gutbrod (Meteoblue
AG) for providing the applications described
or showcased in this paper, as well as the estimation
of their requirements. We wish to thank Naweiluo

Zhou for providing an up to date description
of the CYBELE project. We would also like
to thank the (30+) research institutes and enterprises
across several EU countries that have or are still
collaborating on these three Euro-pean projects
for their valuable work.

Corresponding authors
José Miguel Montañana Aliaga, Ph.D, Senior Researcher
Höchstleistungsrechenzentrum Stuttgart (HLRS)
Nobelstraße 19, 70569 Stuttgart, Germany
E-mail: jmmontanana@gmail.com

References
[1]	 Amdahl, G. M. (1967) "Validity of the single processor approach to achieving large scale computing

capabilities", In Proceedings of the Spring Joint Computer Conference (NY, USA), AFIPS ’67
(Spring), Association for Computing Machinery, p. 483-485. DOI 10.1145/1465482.1465560.

[2]	 Carnero, J. and Nieto, F. J. (2018) "Running simulations in HPC and cloud resources
by implementing enhanced Tosca workflows", In 2018 International Conference on High
Performance Computing & Simulation (HPCS), pp. 431-438. DOI 10.1109/HPCS.2018.00075.

[3]	 Dalcin, L. (2019) "MPI for Python". [Online]. Available: https://mpi4py.readthedocs.io/en/stable/
index.html [Accessed: 15 Sept. 2020].

[4]	 Davy, S. (2020) "CYBELE Fostering Precision Agriculture And Livestock Farming Through Secure
Access To Large-Scale Hpc-Enabled Virtual Industrial Experimentation Environment Empowering
Scalable Big Data Analytic". [Online]. Available: https://www.cybele-project.eu [Accessed:
15 Sept. 2020].

[5]	 Esposito, R., Mastroserio, P., Tortone, G. and Taurino, F. M. (2003) "Standard FTP and GridFTP
protocols for international data transfer in Pamela Satellite Space Experiment. In Proceedings
from the 13th International Conference on Computing in High-Enery and Nuclear Physics (CHEP
2003).

[6]	 Li, Z. (2020) "Geospatial Big Data Handling with High Performance Computing: Current
Approaches and Future Directions", In High Performance Computing for Geospatial
Applications, pp. 53-76. E-ISBN 978-3-030-47998-5, ISBN 978-3-030-47997-8.
DOI 10.1007/978-3-030-47998-5_4.

[7]	 Mineter, M. J., Dowers, S. and Gittings, B. M. (2000) "Towards a HPC Framework
for Integrated Processing of Geographical Data: Encapsulating the Complexity of Parallel
Algorithms", Transactions in GIS, Vol. 4, No. 3, pp. 245-262. E-ISSN 1467-9671.
DOI 10.1111/1467-9671.00052.

[8]	 Montañana, J. M. (2010) "Providing Fault Tolerance in Interconnection Networks for PC
Clusters: Efficient Mechanisms", Lap Lambert Academic Publishing. ISBN-13 978-3838318905,
ISBN-10 9783838318905.

[9]	 Montañana, J. M. and Gorroñogoitia, J. (2020a) "Data mover plugin provides support for GridFTP
data transfers to croupier cloudify orchestrator". [Online]. Available: https://github.com/ari-apc-
lab/croupier/tree/euxdat/croupier_plugin/data_mover [Accessed: 20 Sept. 2020].

[10]	 Montañana, J. M., Hervás, A. and Hoppe, D. (2020b) "HPC-Enabled Geoprocessing Services
Cases: EUXDAT, EOPEN, and CYBELE European Frameworks", In Proccedings of the 12th
International Conference on Advanced Geographic Information Systems, Applications, and Services
(GEOProcessing), pp 31-35.

Open Source Framework for Enabling HPC and Cloud Geoprocessing Services

[76]

[11]	 Muhollem, J. (2017) "Warm winter has put state’s apple crop at risk, expert warns", Pennsylva-
nia State University. [Online]. Available: https://phys.org/news/2017-03-winter-state-apple-crop-
expert.html [Accessed: 20 Sept. 2020].

[12]	 NCSA (2020) "uberftp - GridFTP-enabled client". Linux man page. [Online]. Available:
https://linux.die.net/man/1/uberftp [Accessed: 20 Sept. 2020].

[13]	 EUXDAT (2020) "EUXDAT European e-Infrastructure for Extreme Data Analytics
in Sustainable Development". [Online]. Available: https://www.euxdat.eu [Accessed: 20 Sept.
2020].

[14]	 Perakis, K., Lampathaki, F., Nikas, K., Georgiou, Y., Marko, O. and Maselyne, J. (2020) "CYBELE
– Fostering precision agriculture & livestock farming through secure access to large-scale HPC
enabled virtual industrial experimentation environments fostering scalable big data analytics",
Computer Networks, Vol. 168, ISSN 1389-1286. DOI 10.1016/j.comnet.2019.107035.

[15]	 PESSL INSTRUMENTS GMBH (2020) "Stations and datalogger". [Online]. Available:
http://metos.at/micrometos-clima [Accessed: 15 Aug. 2020].

[16]	 Serfon, C., Barisits, M., Beermann, T., Garonne, V., Goossens, L., Lassnig, M., Nairz, A.
and Vigne, R., ATLAS Collaboration (2019) "Rucio, the next-generation Data Management
system in ATLAS", Nuclear and Particle Physics Proceedings, Vol. 273-275, pp. 969-975.
ISSN 2405-6014. DOI 10.1016/j.nuclphysbps.2015.09.151.

[17]	 SURFsara (2015) "Globus client. Grid Documentation v1.0." [Online]. Available: http://doc.grid.
surfsara.nl/en/latest/Pages/Advanced/storage_clients/globus.html [Accessed: 15 Aug. 2020].

[18]	 EOPEN (2020) "EOPEN Open interoperable platform for unified access and analysis of earth
observation data". [Online]. Available: https://eopen-project.eu [Accessed: 20 Sept. 2020].

[19]	 Vitasse, Y. and Rebetez, M. (2018) "Unprecedented risk of spring frost damage in Switzerland
and Germany in 2017", Climatic Change, Vol. 149, pp. 233-246. E-ISSN 1573-1480,
ISSN 0165-0009. DOI 10.1007/s10584-018-2234-y.

[20]	 Zhang, J. (2010) "Towards personal high-performance geospatial computing (hpc-g):
perspectives and a case study", In Proceedings of the ACM SIGSPATIAL International Workshop
on High Performance and Distributed Geographic Information Systems (HPDGIS), pp. 3-10.
DOI 10.1145/1869692.1869694.

