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Abstract
The paper deals with the sources of competitiveness of Czech cereal production by considering precision 
farming technology and employing micro-level data collected in the FADN database for the period 
2005–2018. The analysis is based on the stochastic frontier modelling of an input distance function  
in the specification of the four-component model, which currently represents the most advanced approach  
to technical efficiency analysis. To provide a robust estimate of the model, the paper employs methods which 
control for the potential endogeneity of netputs in the four-step estimation procedure. Furthermore, the total 
factor productivity change is calculated using the Törnqvist-Theil index. The results reveal that Czech cereal 
producers took great advantage of their production possibilities and experienced technological progress, which 
contributed considerably to productivity dynamics and consequently to an increase in their competitiveness. 
Precision farming, which is associated with a large number of innovations reflected in technological change  
and optimal resource use, contributed to higher technical efficiency connected with cost savings in Czech 
cereal production. 
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Introduction
The rising demand for agricultural products, 
combined with the need for environmental 
protection and climate change challenges, has 
put pressure on agriculture to find innovative 
farming practices. Precision farming, which is  
a modern farming management concept using 
digital techniques to monitor and optimise 
agricultural production processes (Schrijver et al., 
2016), is a way to meet the challenges of sustainable 
agriculture in the 21st century. 

In the last few years, precision farming has been 
gaining attention in the European Union, although 
the definition of precision farming can be dated 
back to the late 1990s. According to the National 
Research Council (1997), precision farming is 
like “a management strategy that uses information 
technologies to bring data from multiple sources  
to bear on decisions associated with crop 
production”. However, precision farming is not 
just about crop production (see e.g. Lovarelli et al., 
2020). It is a farming management concept based 

upon observing, measuring and responding to inter- 
and intra-field variability in crops or in aspects  
of animal rearing (Zarco-Tejada et al., 2014). More 
simply, it is a way to apply the right treatment 
in the right place at the right time (Gebbers  
and Adamchuk, 2010). Precision farming utilizes 
information technology, sensor technologies, 
satellite technology, Artificial Intelligence (AI),  
and the Internet of Things for enhancing all functions 
and services of the agriculture sector (Khanal et al., 
2017 and Schrijver et al., 2016). Moreover, precision 
farming implements techniques and technologies 
that highlight the relevance of integrating specific 
ecological principles and biodiversity management 
procedures into agrospace management, while 
optimizing inputs to maximize yields (Loures et al., 
2020). For example, machine learning technology 
can be integrated with remote sensing for accurate 
forecasting of crop production and estimation  
of nitrogen levels in precision farming (Torky and 
Hassanein, 2020). This data-driven agriculture 
can be viewed as one of the main strategies  
and concepts proposed to increase production 
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efficiency while decreasing its environmental 
impact (Foley et al., 2011). 

Economic as well as environmental studies (Zhang 
et al., 2002; Zarco-Tejada et al., 2014; Mintert  
et al., 2016; Schrijver et al., 2016; Balafoutis  
et al., 2017; Jat et al., 2018; Finger et al., 2019; Soto 
et al., 2019; Loures et al., 2020) have emphasised 
multiple benefits from precision farming. Focusing 
on cereal production, the benefits of precision 
farming include reducing costs by only applying  
fertilizers where they are required, based  
on soil samplings and analysis of the yield data, 
improving the management of water resources, 
and optimizing performance through automated 
harvesting practices (Cisternas et al., 2020).  
In conventional farming, on the contrary, fertilizers 
are applied uniformly over fields at certain times 
during the year. This leads to over-application  
in some places, with an environmental cost 
(water pollution), and under-application in others,  
with an economic cost (reduction of crop yields). 
Similarly, precision farming uses herbicides  
and pesticides in specific areas where and when they 
are needed. Furthermore, controlled traffic methods 
reducing soil compaction by heavy machinery 
bring additional economic as well as environmental 
cost reductions (Zarco-Tejada et al., 2014).  
The comparative analysis of precision  
and conventional maize and wheat production 
presented by Jat et al. (2018) reveals a higher 
yield of both kinds of cereals and a lower cost  
in precision farming compared to conventional. 
That is, precision farming contributes to field 
efficiency growth (Balafoutis et al., 2017).  
The yield increase is a result of the compound 
effect of improved soil health, better water regimes, 
reduced weed population, and specific nutrient 
management. The lower cost of production is 
mainly due to lower costs for tillage, irrigation  
and weeding (Jat et al., 2018).

The positive effects of precision agriculture 
are reflected in the efficiency of the conversion  
of inputs into outputs and in the competitiveness  
of agricultural producers. Interestingly, in economic 
research there is a gap in precision farming’s 
technical efficiency and productivity analysis. 
Moreover, little research has been carried out  
in the Czech Republic on this topic. The research 
on technical efficiency and productivity analysis is 
predominantly devoted to conventional farming. 
For example, Čechura et al. (2015) analysed 
the factors determining changes in total factor 
productivity (TFP) in Czech cereal production 
based on the Törnqvist-Theil index and the fixed 
management model. Their results highlighted  

the role of technological change in productivity 
growth and recommended targeting agricultural 
support toward modernization and innovation  
in the cereals sector. Kostlivý et al. (2020) 
investigated the technical efficiency of Czech 
crop-producing farms based on the stochastic 
frontier true random effect model, taking  
into account the heterogeneity of farms,  
and pointed out that innovative crop farms 
are likely to be more productive. Bokusheva  
and Čechura (2017) evaluated the TFP  
and the technical efficiency of crop farms in six 
member states of the European Union (the Czech 
Republic, among others) based on the four-error 
component model introduced by Kumbhakar et al. 
(2014). Their results confirmed the contribution  
of technological progress to TFP growth  
and indicated that sample farms can greatly 
reduce their costs for producing the same volume 
of outputs (by 15% in the case of Czech farms 
evaluated on the sample mean). In crop production, 
the same four-error component model, which is  
the most advanced approach to estimating technical 
efficiency, was also applied by Lien et al. (2018), 
who analyzed Norwegian crop-producing farms, 
Addo and Salhofer (2019), who focused on Austrian 
crop farms, and Pisulewski and Marzec (2019), 
who investigated Polish crop farms. The efficiency 
literature deals with Less Favoured Areas (LFA) 
and organic farming to a lesser extent. For example, 
Rudinskaya et al. (2019) evaluated the differences 
in Czech farms’ technical efficiency resulting  
from their location in LFA using a stochastic 
frontier analysis (SFA) and true random effects 
model. Madau (2007) applied SFA to estimate 
technical efficiency in a sample of Italian organic 
and conventional cereal farms. The results of these 
studies agree that organic farms and farms situated 
in LFA tend to overuse resources compared to best-
practice farms.

The aim of the paper is to evaluate differences  
in productivity and efficiency between the group 
of farmers who use the technology of precision 
farming and the group of farmers who use standard 
conventional farming technology. In particular,  
the study aims to fill the gap in the literature  
by providing a deep insight into the sources  
of competitiveness of precision farming  
by employing new advances in productivity  
and efficiency analysis and using individual 
farm data (FADN) with information on precision 
farming. 

The paper is organized as follows: The next 
section introduces data and a model specification  
and describes the empirical strategy; then the results 
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and discussion are presented; and the final section 
summarizes our findings and provides concluding 
remarks.

Materials and methods
The analysis is based on the currently most 
advanced approach to investigating technical 
efficiency, introduced by Kumbhakar et al. (2014)  
and Colombi et al. (2014). The four-error component 
model, called the generalized true random effects 
model (GTRE) by Tsionas and Kumbhakar 
(2014), allows for the estimation of the persistent  
and transient parts of technical inefficiency  
from the same data while considering latent 
heterogeneity. The distinction between persistent 
and transient technical inefficiency has significant 
analytical and political implications because these 
parts of overall technical inefficiency may vary 
across farms, for various reasons, and can be 
corrected by more or less fundamental changes. 
As Njuki and Bravo-Ureta (2015) have mentioned, 
persistent technical inefficiency could arise due 
to the presence of rigidity within an organization 
and production process. In other words,  
it reflects structural problems in the organization 
of the production process or a systematic lack  
of managerial skills (Filippini and Greene, 2016) 
and is unchangeable without a new policy or change 
in the ownership and management of companies 
(Kumbhakar et al., 2014). Transient inefficiency 
arises as a result of non-systematic managerial 
failures that can be resolved in the short term 
(Filippini and Greene, 2016). It is a result of shocks 
associated with new production technologies, 
human capital, and learning-by-doing (Pisulewski 
and Marzec, 2019).

In this study, the GTRE specification is applied  
on the input distance function (IDF), which measures 
the largest factor of proportionality ρ by which  
the input vector x can be scaled down in order  
to produce a given output vector y  
with the technology existing at a particular 
time t (Caves et al., 1982), formally:  
DI(y,x,t) = max {ρ:x/ρ L(y)}. According to Caves  
et al. (1982), if DI(y,x,t) = 1, the given output  
vector y is produced with the minimum amount  
of inputs at a given time and with the given 
technology, and a farm is technically efficient.

Implying the homogeneity property of the IDF  
(Knox Lovell et al., 1994) that is imposed  
by normalising all the inputs by one input, 
introducing statistical error term (vit) and 
latent heterogeneity (μi), and replacing lnDI

it  
with inefficiency terms: persistent technical 

inefficiency (ηi) and transient technical inefficiency 
(uit), that is ηi + uit = lnDI

it, the translog IDF takes 
the form of the GTRE model of M-outputs (y), 
J-inputs (x), and time (t):

	(1)

where subscripts i, with i = 1,2,…,N, and t, 
with t =1,…,T, refer to a certain farm and time 
(year), respectively. α, β, γ, and δ are vectors  
of the parameters to be estimated. The symmetry 
restrictions imply that βjk = βkj and αmn = αnm. The time  
trend included in the IDF allows for capturing  
the joint effects of embedded knowledge,  
technology improvements, learning-by-doing, 
and input quality improvements (see Čechura  
et al., 2017). Finally, the error term consists  
of: vit~N(0,σ2

v), uit~N+(0,σ2
u), ηi~N+(0,σ2

η),  
and μi~N(0,σ2

μ). 

In addition to the estimation of technical efficiency, 
the specification of the production technology 
in the translog IDF also allows for calculation 
of the total factor productivity change using  
the Törnqvist-Theil index (TTI), defined as the ratio 
of the revenue-share weighted geometric mean 
of individual outputs to the cost-share weighted 
geometric mean of individual inputs (Coelli et al., 
2015). Formally, the logarithmic form of TTI is 
given by (Bokusheva and Čechura, 2017):

 (2)

where  are output revenue shares

and  are input cost shares.

Following Diewert (1976), the TTI can be derived 
using the parameter estimates of the translog IDF  
in (1) as the sum of three components: scale effect 
(SC = lnιit), technical efficiency effect (TE = lnυit), 
and technological change (TC = lnτit) effect:

lnTFPit = lnιit + lnυit + lnτit. 	 (3)

The scale effect, capturing the contribution  
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of economies of scale, or in other words, of falling 
average costs as a result of the increasing quantity 
of output (Mankiw, 2009), is measured as:    

 	 (4)

where 

and 

The technical efficiency effect, associated  
with movements towards (or away from)  
the frontier technology, is measured as:

 	 (5)

where .

Finally, the technological change component, 
which captures the improvement in the farm’s 
ability to produce the same amount of output using 
fewer inputs due to the shift of the transformation 
function (frontier) over time (Chambers, 1988), is 
expressed as:

 	 (6)

where  (Bokusheva 

and Čechura, 2017).

The estimation of the GTRE model is undertaken  
as a multistep procedure. We follow Kumbhakar  
et al. (2014) and rewrite the model in (1) as:

	 (7)

where α*
0 = α0 - E(ηi) - E(uit), αi = μi - (ηi - E(ηi))  

and εit = vit - (uit - E(uit)).

This specification ensures that αi and εit have zero 
mean and constant variance. To obtain consistent 
estimates of technology, as well as productivity and 
efficiency measures, we use methods which control 
for the potential endogeneity of netputs, which 
arises when one or more explanatory variables 
are correlated with the error term. Following 
Bokusheva and Čechura (2017), we applied  

a four-step procedure. In step 1, the two-step system 
generalized method of moments (GMM) estimator 
(Arellano and Bover, 1995; Blundell and Bond,  
1998) is used to obtain consistent estimates  
of the IDF parameters. The system GMM, which 
resolves the endogeneity problem and the problem  
of weak instruments, estimates a model in differences 
and levels and employs two types of instruments: 
level instruments for the differenced equations 
and lagged differences for the equations in levels 
(Arellano and Bover, 1995). In step 2, residuals 
are used from the system GMM level equation  
to estimate a random effects panel model employing 
the generalized least squares (GLS) estimator.  
In step 3, the transient technical inefficiency, 
uit, is estimated using the standard stochastic 
frontier technique with assumptions: vit~N(0,σ2

v),  
uit~N+(0,σ2

u). In step 4, the persistent technical 
inefficiency, ηi, is estimated using the stochastic 
frontier model with the following assumptions: 
μi~N(0,σ2

μ), ηi~N+ (0,σ2
η), and the overall technical 

efficiency (OTE) is quantified based on Kumbhakar 
et al. (2014):  All 
these estimates are done in the SW STATA 14.0.

The analysis uses a panel data set drawn  
from the Farm Accountancy Data Network (FADN) 
database and represents the period 2005 till 2018. 
For the estimation of the IDF in this study, we 
define the following vectors of outputs and inputs: 
Cereals output represents the value of the total crops 
output; other crops output is the difference between 
the value of total crops output minus cereals output; 
and other farm output is the difference between the 
value of farm total output and the value of total 
crops output. Land is expressed in hectares of 
farm Utilised Agricultural Area (UAA); capital is 
represented by capital depreciation and contract 
work; labour is measured in an Annual Working 
Unit (AWU, where one AWU represents 1800 
working hours per year); and material is defined as 
total intermediate consumption.

Moreover, we normalize all variables in logarithm 
by their sample mean. This procedure ensures 
that we can interpret the first-order parameters  
as output elasticities and input cost shares, evaluated 
on the sample mean, respectively. In addition,  
we rejected farms with less than 3 consecutive years 
of observations, to comply with the requirements  
of the system-GMM estimator.

Results and discussion
Table 1 provides a parameters estimate of the input  
distance function for Czech cereal producers.  
The results show that the majority of the first-
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order parameters are statistically significant even  
at the 1% significance level. Moreover, the estimates 
meet the theoretical assumptions. Specifically,  
the results of fitted distance functions evaluated 
at the sample means are non-increasing in outputs  
and non-decreasing in inputs. Moreover,  
the quasi-concavity assumption of the input 
distance functions with respect to inputs is also met  
by the estimate. Finally, the AR(2) test  
and Hansen’s J-test statistics indicate the validity  
of model estimates.

Variable Coefficient Std. Err. p-value

Cereals -0.516 0.024 0.000

Other crops -0.274 0.019 0.000

Other farm output -0.139 0.012 0.000

Land 0.126 0.063 0.046

Labour 0.143 0.040 0.000

Capital 0.158 0.028 0.000

Cereals2 -0.101 0.034 0.004

Other crops2 -0.082 0.012 0.000

Other farm output2 -0.048 0.006 0.000

Cereals*Other crops 0.047 0.016 0.003

Cereals*Other farm output 0.036 0.012 0.003

Other crops*Other farm output 0.009 0.007 0.233

Land2 -0.232 0.288 0.421

Labour2 -0.208 0.114 0.071

Capital2 0.107 0.052 0.039

Land*Labour 0.426 0.142 0.003

Land*Capital 0.020 0.094 0.829

Labour*Capital -0.041 0.073 0.571

Time 0.003 0.003 0.283

Time2 0.011 0.001 0.000

Cereals*Time 0.002 0.005 0.689

Other crops*Time 0.001 0.004 0.812

Other farm output*Time 0.003 0.002 0.180

Land*Time -0.014 0.010 0.180

Labour*Time 0.016 0.008 0.060

Capital*Time 0.008 0.005 0.131

Cereals*Land 0.067 0.069 0.332

Other crops*Land -0.018 0.051 0.725

Other farm output*Land -0.057 0.033 0.090

Cereals*Labour 0.047 0.050 0.346

Other crops*Labour -0.069 0.032 0.033

Other farm output*Labour 0.023 0.024 0.353

Cereals*Capital 0.019 0.028 0.496

Other crops*Capital 0.005 0.021 0.811

Other farm output*Capital -0.014 0.014 0.319

LFA -0.074 0.025 0.003

Year_2008 -0.250 0.021 0.000

Constant 0.083 0.029 0.004

Source: author’s calculations
Table 1: Parameter estimate.

First, we evaluate the farm production structure  
in our data set using the shadow shares of outputs. 
The results show high cereal specialization  
in the Czech Republic. The share of cereal output  
in the total output was 56%, evaluated at the sample 
means and using the normalisation for the situation 
with constant returns to scale. The shadow share 
of other crop output is 29% and the third output 
accounts for 15%. As far as the cost shares are 
concerned, we obtained expected results that are 
consistent with the information we have in our 
database. In particular, the highest cost share, 57%, 
was estimated for material inputs. The other inputs 
(labour, capital and land) have similar shares, 
between 12% and 16%. As far as economies of scale 
are concerned, we can conclude that the sample is 
characterized by an almost optimal size. That is,  
the average farm operates with almost constant 
returns to scale.

Technological change is positive and accelerates 
over time, evaluated on the sample mean. Moreover, 
we do reject Hicks-neutral technological change. 
The estimated biased technological change is land-
using and labour- and capital-saving. This indicates 
a successful innovation activity for the sample 
farms, resulting in cost diminution – an important 
source of competitive advantage. Moreover,  
the magnitude of the labour-saving technological 
change, an example of which is machine-learning 
technology (for more examples, see Gallardo  
and Sauer, 2018), indicates the increasing 
prevalence of precision farming practises in cereal 
production. Furthermore, it reflects the real wage 
increase relative to the real rental rate of capital 
and confirms Hick’s induced innovation hypothesis 
(Irmen, 2013).

The TFP was found to be increasing in the first half 
of the analysed period, between 2004 and 2012.  
The average annual growth was 3.4%. However, 
the opposite is true for the second period,  
with an average annual decline of 2.4%. That is, 
the average annual change in TFP over the analysed 
period is almost equal to zero. Figure 1 illustrates 
the estimated trends in the distribution of total factor 
productivity over time, and shows that the main 
source of TFP change was technological change 
(TC). Scale effect (SC) and technical efficiency 
(TE) do not contribute significantly to the TFP 
dynamics over the analysed period. These results 
are in line with a study by Bokusheva and Čechura 
(2017), who found that the TFP growth in French, 
British, and Czech cereal production was prompted  
by technological change in the period 2004–2013. 
This suggests that investments in information, 
sensor, and AI technologies can accelerate 
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productivity and hence increase competitiveness. 
Consequently, and similarly to Kostlivý et al. 
(2020), we can conclude that agricultural policies 
for increasing productivity should concentrate  
on technological progress.

The initial strong positive technological change 
in the first half of the analysed period might be 
related to considerable increases in subsidies 
that resulted in higher investments. The support  
for this conclusion can be found in the development  
of the sample average depreciation. It is well known 
from the literature that subsidies may influence 
farm productivity through different channels, which 
might have a positive or negative impact. Subsidies 
may negatively impact productivity by causing 
allocative and technical inefficiency or soft-budget 
constraints (Kornai, 1986). On the other hand, they 
may improve the access of farms to innovative 
technologies and speed up technological change 
(Bezlepkina et al., 2005). The overall effect is  
a combination of these channels. Our results suggest 
that at least in the first period, Czech farmers took 
advantage of the opportunities of EU accession 
and improved their productivity by speeding  
up technological change.

If we concentrate on the comparison between 
precision and conventional farming, we cannot 
observe any significant differences, not even  
in productivity or technical efficiency evaluated  
on the sample mean. However, as Table 2 
illustrates, despite the fact that we do not find 
significant differences in the mean of technical 
efficiency and total factor productivity, we can 
observe that variability is considerably lower  
in the group of farmers that use precision farming. 
In other words, if a farmer uses precision farming, 

then it is characterized by high technical efficiency. 
Moreover, from a dynamic perspective the farmers 
who started to use precision farming indicated  
an increase in technical efficiency. Moreover, they 
were characterized by higher technological change 
component as compared to conventional farming, 
evaluated on the sample mean.

Whole sample Mean Std.Dev. Minimum Maximum

Overall technical 
efficiency 0.83 0.04 0.53 0.95

Persistent technical 
efficiency 0.91 0.03 0.65 0.98

Transient technical 
efficiency 0.91 0.03 0.63 0.98

Precision farming Mean Std.Dev. Minimum Maximum

Overall technical 
efficiency 0.82 0.01 0.82 0.83

Persistent technical 
efficiency 0.91 0.00 0.91 0.91

Transient technical 
efficiency 0.90 0.01 0.90 0.91

Source: author’s calculations
Table 2: Technical efficiency.

The estimated average value of overall technical 
efficiency (83%), which is similar to the value 
estimated by Kostlivý et al. (2020), reveals that 
Czech cereal producers greatly exploit their 
production possibilities. The overall technical 
efficiency estimates indicate that, as evaluated 
at the sample averages, sample farms can reduce 
their costs by 5% up to 47%. The average overall 
technical efficiency of precision farming is 82%. 
The distribution is relatively dense and skewed 
toward higher values, indicating a cost reduction 
of 17% to 18%. The persistent and transient 
technical efficiencies have a similar level, 91%  
and 90%, respectively, and also a similar distribution. 

0.80

0.85

0.90

0.95

1.00

1.05

1.10

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

SE TC TE TFP

Source: author’s calculations
Figure 1: Total factor productivity and its sources.
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In other words, systematic and unsystematic 
managerial failures have a similarly strong impact 
on the inefficiency of the transformation process  
in precision farming.

Conclusion

The aim of this paper was to investigate  
the sources of competitiveness in precision farming, 
and to evaluate the differences in productivity  
and technical efficiency between the group  
of farmers who use the technology of precision 
farming and the group of farmers who use standard 
conventional farming technology. Attention was 
focused on cereal production from 2005 to 2018 
using FADN data. From a methodological point  
of view, the analysis was based on the currently 
most advanced approach to productivity  
and technical efficiency analysis. The main 
contribution of this paper is the empirical application 
of the recently developed four-error component 
model to the analysis of the efficiency of precision 
farming, along with a comparison to the efficiency 
of standard conventional farming technology, 
which fills the gap in economic research regarding 
the analysis of technical efficiency and productivity 
in precision farming. 

The estimated IDF function revealed that Czech 
cereal production can be characterized by a high  
degree of specialization, high material intensity, 
and an almost optimal operational size.  
In the analysed period, cereal producers exhibited 
technological progress resulting in cost diminution. 
The innovation and modernization of production  
technology was primarily connected  
with technologies and practices that address specific 
labour as well as capital constraints.

Technological change was found to be the most 
important source of the total factor productivity 
dynamics in the analysed period. Especially 

between 2004 and 2012, technological progress led 
to total factor productivity growth of 3% annually. 
This initial strong positive technological change 
was probably considerably accelerated by subsidies 
that resulted in higher investments. That is,  
the results suggest that at least in the first period, 
cereal producers in the Czech Republic took 
advantage of the opportunities of EU accession 
and improved their productivity by speeding 
up technological change. Given the speed  
of technological change and the speed  
of technological obsolescence, the further focus 
of agricultural policy on investment support can 
be recommended, with the aim of increasing  
the productivity as well as the sustainability  
of cereal production.

Precision farming is the result of innovative 
approaches to agricultural production. The new 
technologies and techniques that it utilizes optimise 
agricultural production processes, increase yields 
and reduce economic as well as environmental 
costs. The optimization of input use is supposed 
to be converted into a decrease in technical 
inefficiency. Our study confirmed this statement  
by uncovering the high density of technical 
efficiency scores around the mean value in the group 
of farmers that use precision farming, pointing  
to the fact that there is a higher loss of resources 
in the group of companies with conventional 
technology.
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