Agris on-line Papers in Economics and Informatics

Faculty of Economics and Management CULS Prague, Kamýcká 129, 165 00 Praha - Suchdol

The international peer-reviewed scientific journal, ISSN 1804-1930


New Rural Development and Hierarchical Governance in Vietnam: Impacts of government support on rural households’ income using a Hierarchical Linear Modelling

Manh Hung Do, Sang Chul Park

DOI: 10.7160/aol.2018.100401

Agris on-line Papers in Economics and Informatics, No 4 /2018, December

pp. 3-15

Do, M. H. and Park, S. Ch. (2018) “New Rural Development and Hierarchical Governance in Vietnam: Impacts of government support on rural households’ income using a Hierarchical Linear Modelling", AGRIS on-line Papers in Economics and Informatics, Vol. 10, No. 4, pp. 3-15. ISSN 1804-1930.DOI 10.7160/aol.2018.100401.

Abstract

The New Rural Development (NRD) program is one of the most important policies in agriculture and rural development of Vietnam by 2020. In the period of 2010 – 2015, the government mobilized about 851,380 billion Vietnam Dong (VND) (approximately US$38.7 billion) for investments in rural development projects across the country. Among the top priorities, solving a broadening income and poverty gap between urban and rural areas, between leading and lagging regions, and among ethnic groups are one of the most essential issues. This research paper is targeted to provide an empirical evidence for answering the question whether the government assistance could effectively and positively impact on rural households’ income through the NRD program by using a hierarchical linear modelling (HLM). The results of the mixed effect model could firmly reveal that the financial assistance could positively influence on rural households’ income through investments in roads, income generation models, and technical trainings.

Keywords

Hierarchical Governance, Multilevel Analysis, Hierarchical Linear Modelling, New Rural Development, Vietnam.

References

  1. Beaubien, J. M., Hamman, W. R., Holt, R. W. and Boehm Davis, D. A. (2001) “The application of hierarchical linear modeling (HLM) techniques to commercial aviation research”, Proceedings of the 11th annual symposium on aviation psychology, Columbus, OH: The Ohio State University Press [Online]. Available: https://www.researchgate.net/publication/241285890_the_application_ of_hierarchical_linear_modeling_hlm_techniques_to_commercial_aviation_research [Accessed: 5 Sep. 2018].
  2. Boedeker, P. (2017) “Hierarchical Linear Modeling with Maximum Likelihood, Restricted MaximumLikelihood, and Fully Bayesian Estimation”, Practical Assessment, Research, and Evaluation,Vol 22, No. 2. [Online]. Available: http://pareonline.net/getvn.asp?v=22&n=2 [Accessed:6 Sep. 2018]. ISSN 1531-7714
  3. Browne, W. J. (1998) “Applying MCMC methods to multilevel models”, PhD dissertation,Department of Mathematics Science, University of Bath, the UK [Online]. Available:https://seis.bristol.ac.uk/~frwjb/materials/wbphd.pdf [Accessed 05 Sep. 2018].
  4. Cho, L.-J. and Kim, Y. H. (1991) “Economic development in the Republic of Korea: a policyperspective”, East-West Centre, the University of Hawaii Press. ISBN 0-86638-131-7 [Online].Available: http://hdl.handle.net/10125/22802 [Accessed: 07 Sep. 2018].
  5. Damas, P. and Israt R. M. (2004) “Vulnerability and Poverty: What are the causes and how arethey related?”, ZEF, Bonn University [Online]. Available: https://www.zef.de/fileadmin/downloads/forum/docprog/Termpapers/2004_3a_Philip_Rayan.pdf [Accessed 05 Sep. 2018].
  6. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) “Maximum likelihood from incompletedata via the EM algorithm”, Journal of the Royal Statistical Society, Series B, (Methodological),Vol. 39, No. 1, pp. 1-38. [Online]. Available: https://www.jstor.org/stable/2984875 [Accessed:7 Sep. 2018]. ISSN:1467-9868.
  7. Desimone, L. M., Porter, A. C., Garet, M. S., Yoon, K. S. and Birman, B. F. (2002) “Effectsof Professional Development on Teachers’ Instruction: Results from a Three-yearLongitudinal Study”, Educational Evaluation and Policy Analysis, Vol. 24, No. 2., pp. 81-112. DOI 10.3102/01623737024002081.
  8. Economic Committee (2016) “Báo cáo kết quả thực hiện Giám sát Chương trình Nông thôn mới(NTM)” (in Vietnamese), Ủy Ban Kinh Tế của Quốc Hội (the Economic Committee of the VietnamNational Assembly) [Online]. Available: http://quochoi.vn/uybankinhte/giamsat/Pages/giam-sat.aspx?ItemID=537 [Accessed: 10 Sep. 2018].
  9. Garner, L. C. and Raudenbush, W. S. (1991) “Neighborhood Effects on Educational Attainment:A Multilevel Analysis”, Sociology of Education, Vol. 64, No. 4, pp. 251-262. E-ISSN 19398573,ISSN 00380407. DOI 10.2307/2112706.
  10. Gill, J. (2003) “Hierarchical linear models", In Kimberly Kempf-Leonard (Ed.) "Encyclopediaof social measurement”. New York: Academic Press. ISBN 978-0-12-369398-3.
  11. GSO (2010) “Tổng điều tra dân số và nhà ở tại Việt Nam năm 2009: Các kết quả chủ yếu”(in Vietnamese), Tổng cục thống kê Việt Nam (General Statistics Office of Vietnam) [Online].Available: https://www.gso.gov.vn/default.aspx?tabid=512&idmid=5&ItemID=9812 [Accessed:5 Sep. 2018].
  12. GSO (2016) “Vietnam Household Living Standard Survey (VHLSS) in 2002, 2004, 2006, 2008, 2010,2012, 2014”, General Statistic Office of Vietnam [Survey Data].
  13. Hox, J. J. (2010) “Quantitative methodology series. Multilevel analysis: Techniques and applications",2nd ed., New York, NY, US: Routledge/Taylor & Francis Group, pp. 217, ISBN 978–0–203–85227–9.
  14. Huta, V. (2014) “When to Use Hierarchical Linear Modelling”, The Quantitative Methodsfor Psychology, Vol 10, No. 1, pp. 13-28. ISSN 2292-1354. DOI 10.20982/tqmp.10.1.p013.
  15. Keon-Hyung, L., Sang-Chul, P., Jung-Won, P. and Seunghoo, L. (2013) “Medicaid inpatient costsand nested structural analysis using a hierarchical linear modeling (HLM) approach”, HealthServices and Outcomes Research Methodology, Vol. 13, No. 2-4, pp 157-173. E-ISSN 1572-9400,ISSN 1387-3741. DOI 10.1007/s10742-013-0108-3.
  16. Kreft, I. G., and De Leeuw, J. (1998) “Introducing multilevel modeling”, Thousand Oaks, CA: Sage.ISBN 0-7619-5141-5. DOI 10.4135/9781849209366.
  17. Lee, V. E., Dedrick, R. F. and Smith, J. B. (1991) “The Effect of the Social Organization of Schoolson Teachers' Efficacy and Satisfaction”, Sociology of Education, Vol. 64, No. 3, pp. 190-208.E-ISSN 19398573, ISSN 00380407. DOI 10.2307/2112851.
  18. Ma, X. and Klinger, D. A. (2000) “Hierarchical Linear Modelling of Student and School Effectson Academic Achievement”, Canadian Journal of Education/Revue Canadienne De L'éducation,Vol. 25, No. 1, pp. 41-55. E-ISSN 19185979, ISSN 03802361. DOI 10.2307/1585867.
  19. Manh Hung, D., Viet Hung N., Phuong Thu N. T., Kim Thoan N., Tung Lam, D., Sang Chul, P.(2016) “New Rural Development and Hierarchical Governance in Vietnam”, The Journal of KoreaBalanced Development Studies, Korea Research Institute for Balanced Development, YeungnamUniversity, Vol. 7, No. 2, pp. 1-23. ISSN 1975-6542.
  20. Marks, H. M. and Printy, S. M. (2003) “Principal Leadership and School Performance: An Integrationof Transformational and Instructional Leadership”, Educational Administration Quarterly, Vol. 39,No. 3, pp. 370-397. DOI 10.1177/0013161X03253412.
  21. Occhipinti, S. (2012) “Mixed Modelling using Stata”, Griffith Health Institute Workshop for GSBRC,July 2012 [Online]. Available: http://www.griffith.edu.au/__data/assets/pdf_file/0011/439346/Stata_mixed_intro-1.pdf [Accessed: 16 Aug. 2017].
  22. Osborne, J. W. (2000) “Advantages of hierarchical linear modeling”, Practical Assessment,Research, and Evaluation, Vol. 7, No. 1, pp. 1-3. [Online]. Available: http://ericae.net/pare/getvn.asp?v=7&n=1 [Accessed: 05 Sep. 2018]. E-ISSN 1531-7714.
  23. Paterson, L. and Goldstein, H. (1991) “New Statistical Methods for Analysing Social Structures:an introduction to multilevel models”, British Educational Research Journal, Vol. 17, No. 4.,pp. 387-393. E-ISSN 1469-3518, ISSN 0141-1926. DOI 10.1080/0141192910170408.
  24. Pinheiro, J. C. and Bates, D. M. (2000) “Mixed-Effects Models in S and S-PLUS”, Springer-Verlag,pp. 82-93, ISBN 978-0-387-22747-4. DOI 10.1007/B98882.
  25. Raudenbush, S. and Bryk, A. (1986) “A Hierarchical Model for Studying School Effects”, Sociologyof Education, Vol. 59, No. 1, pp. 1-17. E-ISSN 19398573, ISSN 00380407. DOI 10.2307/2112482.
  26. Raudenbush, S. W., Rowan, B. and Kang, S. J. (1991) “A Multilevel, Multivariate Modelfor Studying School Climate with Estimation Via the EM Algorithm and Application to U.S. High-School Data”, Journal of Educational and Behavioral Statistics, Vol. 16, No. 4, pp. 295-330. DOI 10.3102/10769986016004295.
  27. Raudenbush, S. W. and Bryk, A. S. (2002) “Hierarchical linear models: Applications and dataanalysis methods, second edition”, Newbury Park, CA: Sage. ISBN-13 978-0761919049.
  28. Rice, N. and Leyland, A. (1996) “Multilevel Models: Applications to Health Data”, Journalof Health Services Research & Policy, Vol.1, No. 3, pp. 154-164. DOI 10.1177/135581969600100307.
  29. Rice, N. and Jones, A. (1997) “Multilevel models and health economics”, Health Economics,Vol. 6, No. 6, pp. 561-575. [Online]. Available: https://www.york.ac.uk/media/che/documents/papers/technicalpapers/CHE%20Technical%20Paper%204.pdf [Accessed: 07 Sep. 2018].
  30. Rudengren, J., Huong, N. T. L, and Wachenfelt, A. (2012) “Rural Development Policiesin Vietnam: Transitioning from Central Planning to a Market Economy”, Institute for Securityand Development Policy. Stockholm Paper. [Online]. Available:http://isdp.eu/content/uploads/images/stories/isdp-main-pdf/2012rudengren-rural-developmentvietnam.pdf [Accessed: 07 Sep. 2018]. ISBN 978-91-86635-34-3.
  31. Sang-Chul, P., Kwak Chang Gyu, and Kwon Sung Wook. (2012) “Residential Developmentand Hierarchical Governance: Multifamily Housing and Multilevel Analysis”, The KoreanJournal of Policy Studies, Vol. 27, No. 2, pp. 1-22. [Online]. Available: http://s-space.snu.ac.kr/bitstream/10371/79013/1/01_Sung-Wook%20Kwon.pdf [Accessed: 11 Sep. 2018].ISSN 1225-5017.
  32. Sooyoung, P. (2009) “Analysis of Saemaul Undong: a Korean rural development programmein the 1970s”, Asia-Pacific Development Journal, Vol. 16, No. 2, pp. 113-140. [Online]. Available:https://www.unescap.org/sites/default/files/apdj-16-2-5-Park.pdf [Accessed: 7 Sep. 2018].ISSN 1020-1246.
  33. StataCorp (2015) “Stata: Release 14”, Statistical Software. College Station, TX: StataCorp LP.
  34. The World Bank (2018) “World Bank Open Data of Gross Domestic Product (GDP) (currentUS$)” [Online]. Available: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=VN[Accessed: 9 Sep. 2018].
  35. Woltman, H., Feldstain, A., Mackay, J. C. and Rocchi, M. (2012) “An introduction to hierarchicallinear modeling”, Tutorials in Quantitative Methods for Psychology, Vol. 8, No. 1, pp.52-69.ISSN 1913-4126. DOI 10.20982/tqmp.08.1.p052.
  36. Yu, R. (2012) “Introduction to Multilevel Modeling”, Training course materials for the workshop helpon 8/7/2012 [Online]. Available: http://odin.mdacc.tmc.edu/~ryu/materials/MultilevelModeling_part1.pdf [Accessed: 5 Sep. 2018].

Full paper

icon of PDF documents Full paper (.pdf, 372.88 KB).

ISSN 1804-1930
© Agris on-line Papers in Economics and Informatics, 2009 - 2019
Faculty of Economics and Management CULS Prague, Kamycka 129, 165 00 Praha 6 - Suchdol